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Abstract

We introduce the structure of the EIGEN token, which can function as a universal intersubjective work
token. We unpack this term here: work token refers to a token that needs to be staked (i.e., locked up),
to perform some work. Work tokens are employed by many existing proof-of-stake blockchain platforms
to perform validation in the blockchain using a mechanism called staking. Work tokens are used not only
as entry conditions for performing digital work but also for punishing non-compliant workers through a
cryptoeconomic mechanism called slashing (i.e., when digital workers break the covenants inherent in the
platform, they risk losing their work tokens). Existing work tokens have at least one of two limitations: (a)
they are special-purpose: created specifically for a particular enshrined digital task (e.g., the ETH token is
used for validating Ethereum blocks), and/or (b) they are objective: enforceable only when the violations of
the digital worker are clearly attributable onchain (via a programmatic proof). EigenLayer, a restaking (or
more accurately, permissionless programmable staking) platform, removes the “special-purpose” limitation
from ETH. Restaking expands the scope of ETH to become a ”universal” objective work token so that it can be
staked to participate in all kinds of tasks. However, the “objective” limitation remains, as punitive slashing
can only be applied to objectively verifiable tasks on Ethereum.

In this paper, we build a new staking model that breaks both limitations simultaneously: (a) a universal
work token that can be used across all digital tasks, which are (b) intersubjectively verifiable, i.e., any task
for which any two reasonable, observant humans will agree whether a digital worker failed to carry out
the task correctly. The core idea is to create a forking token at the application layer, building on a line of
pioneering prior work. This paper expands the utility of the forking token significantly in four dimensions:
a) universality: allowing it to be used universally across various tasks, b) isolation: endowing the ability to
use the forking token in fork-unaware applications, c) metering: the cost of social consensus is metered and
enforced, and d) compensation: enabling users to be compensated for faults affecting them.

This token significantly expands the types of credible commitments that digital workers can make with
cryptoeconomic security. It significantly expands the scope of digital tasks that blockchains can offer their
users securely. In particular, this token enhances the set of Actively Validated Services (AVS) that can be
secured through EigenLayer. Furthermore, EIGEN serves a fully complementary role to ETH with ETH
staking powering objective fault slashing and EIGEN staking powering slashing for intersubjective faults. We
view this intersubjective work token as taking the Ethereum ecosystem one step closer to the goal of building
the Open Verifiable Digital Commons.

1 Introduction

1.1 Background

The significant evolutionary advantage of humans rests in our ability to cooperate in large numbers. Large-
scale cooperation requires trust, which is usually provided by intermediating institutions. The modern econ-
omy has seen the rise of digital platforms such as Facebook, Uber, Airbnb, Visa, iTunes, eBay, and Amazon
marketplace, which allow global communication, efficient markets, and cooperation at scale. One might say
that these digital platforms form a system of digital commons, somewhat akin to the physical commons, such
as forests, fisheries, national parks, and oceans, that we have in the real world.

While existing digital platforms rival and in many cases out-strip physical commons in access, importance
and reach, they do not fully qualify as digital commons as they are controlled without democratic governance,
leading to significant frictions, such as (i) centralized information and control silos, where users or innovative
solutions can be de-platformed any time, (ii) platforms enshrine somewhat subjective positions, such as the
specific recommendation engine, moderation policy, and mechanisms to evaluate driver behavior, credit or
renter behavior, (iii) innovations on top of these platforms require the permission of the platform creators,
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and this significantly constrains the innovation velocity, and (iv) platforms can unilaterally alter policies that
affect users without seeking their inputs.

Blockchains offer an alternative paradigm for building the global digital commons where it is possible to have
(i) permissionless user access, (ii) native user governance, (iii) programmatic incentives to share value across
the various participants, and (iv) permissionless innovation. All of these properties arise because blockchains
have two main properties: (a) openness, which comprises censorship resistance and permissionlessness, and
(b) verifiability, which ensures that the nodes participating in the blockchain are performing their duties cor-
rectly. Thus, blockchains offer a new paradigm for building the open, verifiable digital commons.

Staking via a work token. This brings us to the question of how one can create a digital commons platform,
which is at the heart of blockchain architecture design. Instead of a legal solution of ensuring openness and
correctness via laws, blockchains strive to create a neutral digital platform by ensuring that no single party is
responsible for creating and maintaining the platform. That is, blockchains decentralize the ability to partici-
pate in the upkeep of the platform, by which we can achieve credible neutrality. A popular mechanism that
blockchains employ to achieve this decentralization is using proof-of-stake protocols: creating a token that
anyone can use to participate in the digital work required for the upkeep of the blockchain [1]. One can think
of these staking tokens as work tokens, designed specifically for the particular digital task of participating
in the operations of running that particular blockchain. Similar to how a taxi medallion is required to drive
a taxi in certain cities, these work tokens are required to participate in the digital work associated with the
upkeep of the blockchains.

Slashing. A major advantage of proof-of-stake protocols is that if the participating stakers violate the com-
mitments required for the digital work, then they can lose their staking tokens using a mechanism called
slashing. Slashing ensures that even if all the validators try to collude to break the commitments inherent in
running the blockchain, they will lose their staking tokens. This creates a system of Karma: the law of attribu-
tion and enforcement. Ethereum, again, pioneered this structure of “cryptoeconomic security” [2]. Crypto -
alludes to the attributability of the fault to agents using cryptographic methods like signatures, and economic
- alludes to the loss of economic value associated with stake for agents who commit faults. Cryptoeconomic
security is a significant advance in the ability of individual agents to cooperate to perform digital work, thus
creating an emergent digital platform that can make credible commitments of neutrality and correctness.

EigenLayer turns ETH into a Universal Objective Work Token. Restaking in EigenLayer enables a universal
mechanism to share the same stake across a variety of different digital tasks, thus making ETH a “universal
work token”. While prior staking mechanisms coupled a given type of stake/token with an enshrined set
of digital tasks in the platform, restaking enables the same token to participate in a variety of digital tasks
including new consensus mechanisms, optimistic rollups, bridges and MEV management solutions, which
third parties can permissionlessly create and innovate upon. Thus EigenLayer expands the scope of staking
ETH from a single enshrined task of participating in consensus to a variety of digital tasks that can be built
permissionlessly on top of the common blockchain. However, restaking provides cryptoeconomic security
via slashing only for digital tasks whose faults are objectively attributable, i.e., clearly verifiable onchain.
Examples of such onchain attributable faults include double spending (the same coin should never be spent
twice in a payment chain), double signing (there can be no two blocks with the same block index), invalidity
(creating a new state of the system which is not correctly transitioned from the previous state given the in-
tervening transactions). Thus we can say that EigenLayer converts ETH into a Universal Objective Work Token.

Limitations of restaking: non-objectively attributable tasks exist. There are many categories of faults that
digital workers can commit that do not have objective attribution on the chain. For example, let us take the
example of a price oracle required onchain, which brings the market price of a digital asset onchain. Price
oracles are famously difficult to build slashing protocols for: if a digital worker performing an oracle task
reports that 1BTC = 1USD (which is wrong by several orders of magnitude), the blockchain by itself has no
locus to verify the correctness or otherwise of this assertion. This is because blockchains are purely determin-
istic state machines, and to preserve determinism and objectivity, these subjective claims are excluded from
intrinsic verification in the blockchain. There are other examples of claims that are not verifiable objectively
onchain: bridges (claims about the state of a different blockchain on another blockchain), data availability
(i.e., verifying whether a data item has been published in public), and censorship (not incorporating some
transactions into a ledger). Another major problem with enforcing slashing onchain is that immutable code
for slashing is difficult to get right - if there is any error in the code, then honest nodes may get slashed.

Current state-of-the-art mechanisms to resolve non-objectively attributable frauds. There are two classes
of mechanisms that have been proposed for this purpose of non-objectively attributable tasks:
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Figure 1: The x−axis represents the amount of concordance among the observers for the attribution. The
y−axis represents the scope of faults attributable. We focus in this paper on faults attributable with high
concordance.

1. Penalize (i.e., slash) divergent claims of a node relative to the majority of the nodes. However, such a
mechanism is subject to the tyranny-of-majority. If the majority of workers are dishonest, then a minority
of honest agents can be slashed. This is clearly unacceptable.

2. Utilize an entrenched committee to verify the veracity of a node’s claims and issue slashing authoriza-
tions. The problem with this model is that if the committee is malicious, they can slash honest workers.
The crux of the problem here is the tyranny-of-majority (of token holders or an entrenched committee).

Both approaches are vulnerable to tyranny-of-majority, and, even more fundamentally, it boils down to the
question of who watches the watchers/committee.

1.2 Categorization of Faults in Digital Tasks

We can categorize faults made while performing digital tasks into three categories based on the ability
to attribute them: (i) objectively attributable faults, (ii) intersubjectively attributable faults, and (iii) non-
attributable faults.

1.2.1 Objectively Attributable Faults

These are faults that are attributable purely mathematically and cryptographically without the need to ask
the opinions of others. More explicitly, any honest user can be convinced of the objectively attributable fault
unilaterally with just local information. A downstream benefit of this feature of objectively attributable fault
is that it provides the ability to resolve objectively attributable faults onchain by specifying their dispute
resolution mechanism1 in smart contracts. A clear example is execution validity: if a node runs a piece of
code on a deterministic virtual machine and certifies the input and output, it can be verified onchain zk proof
or optimistic fraud proofs. A second example of this is double-signing: in a consensus protocol, if a node
is not supposed to sign two conflicting blocks but it does, then it can be proven onchain that the node has
committed an onchain attributable fault. We furthermore note that the former fault (validity) is proactively
observable - for example, the chain can run a verifier for a ZK proof and proactively ensure the correctness,
whereas the latter (double-signing) is only retroactively observable: you can prove that a node committed the
fault only after the signature on the second conflicting block is received.

1.2.2 Intersubjectively Attributable Faults

These are a set of faults where there is a broad-based agreement among all active observers of the system.
We call such faults intersubjectively attributable faults. We can further subdivide this class into (i) retroac-
tively observable, which can be attributed at any point in time, vs (ii) concurrently observable, which needs

1This dispute resolution mechanism could be a ZK verifier or a fraud proof mechanism.
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Figure 2: This table illustrates the categorization of faults in digital tasks.

the observer to be online and observing at the time of the fault in order to be attributed. Some examples of
retroactively observable intersubjective faults: (a) oracle price inputs - if the price input by an oracle node is
clearly different from the actual price by a significant margin, all outside observers can come to a consensus
on whether the price reported was correct or not, and whether the oracle should be slashed, (b) objectively
attributable faults for which it is hard to write slashing conditions - as an example, running a specific instance
of an AI / ML code. Some examples of concurrently observable intersubjective faults are: (c) Data availability
- if a data item is published transparently into a peer-to-peer network or not can be attributed by all those
observing the peer-to-peer network, (d) censorship - if a transaction that has been propagated in the peer to
peer network but has not been included in the newly proposed blocks for sufficient time due to a malicious
collusion, then in a synchronous network, it can be attributed by online observers watching the mempool.

The fault observability in concurrently observable faults can be enhanced by reducing the monitoring cost of
the observer so many more nodes can observe the faults. We note that this phenomenon is not unique to dig-
ital platforms. In fact, in the breakthrough work [3] on “Governing the Commons” by Elinor Ostrom, winner
of the Nobel Memorial Prize in Economics, it is observed that reducing the monitoring cost of violations is a
prerequisite to a well-functioning commons.

For example, light nodes can sample portions of the data claimed available using a method called Data
Availability Sampling. Light nodes can randomly sample the transactions in the p2p network (rather than
monitoring all the transactions) to attribute censored transactions. Another factor that significantly boosts
attributability is circumstantial evidence downstream of the digital task manipulation: for example, was an
oracle manipulation then used downstream to attack a lending protocol, or if data might have been purposely
withheld to pass an invalid claim through a fraud proof, or an oracle transaction censored to manipulate
liquidations, etc. In all of these cases, there will be strong social agreement on whether the system was
purposely attacked.

1.2.3 Non-attributable Faults

The third category of faults is not attributable outside the victim of the fault. For example, consider a secret-
sharing system where anyone who wants to store a secret can split the secret into smaller chunks of informa-
tion and different nodes store different subsets of the data. The secret is revealed only after a certain amount
of time. In this case, if the nodes collude together to break the privacy and reveal the secret, it is possible
for the secret storer to know that his / her secret is revealed but a third party cannot disambiguate between
whether the storer is malicious or the system is majority malicious. Since it is impossible to attribute and
punish for these faults, it is only possible to avoid them by making the validators decentralized and hence
collusion resistant.

Subjective “faults” are those where observers make their own judgments, with no guaranteed concordance
across the different observers. Examples include taste judgments, reputation scoring of drivers or restaurants,
questions about the future price, etc. These squarely fall outside the scope of the present work, because, due
to the lack of concordance, we cannot build strong cryptoeconomic guarantees on these type of “faults”.

Fig. 1 illustrates the distinction among objectively attributable faults, intersubjective attributable faults and
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subjective faults. Fig. 2 illustrates a categorization of different types of tasks and their resolvability with
different mechanisms.

1.3 Overview of Core Contributions

In this paper, we introduce EIGEN a new universal method to induce cryptoeconomic penalties for intersub-
jectively attributable faults committed by stakers, without being vulnerable to the tyranny-of-majority.

Prior Work. The intellectual precursor to this work is the pioneering work by Vitalik Buterin documented in
the Ethereum blog (circa 2014-2015): [4], [5], [6]. To the best of our knowledge, Augur built on these posts
and introduced the idea of designing a token that forks at the application layer of Ethereum in the context of
prediction markets [7]. Kleros and Aragon Court use the system of jurors who are selected probabilistically
based on their stake to vote on subjective faults (but no forking) [8, 9]. In UMA, each token holder votes on
a price request submitted by the Optimistic Oracle for resolving disputes [10] and relies on Nash equilibria
without forking for security.

Contributions of this work. In this paper, we build on the prior work of using social consensus (forking) for
resolving intersubjectively attributable faults to design EIGEN. Compared to the prior work, we expand the
scope of EIGEN in four significant directions:

1. Universality. Building a universal intersubjective token rather than a solution for a specific problem.

2. Isolation. Solving how to utilize a forking token in fork-unaware applications such as DeFi.

3. Metering. Ensuring that the cost to social consensus for resolving any intersubjective fault is metered
and the value distributed to those who partake in it.

4. Compensation. Designing mechanisms to utilize the intersubjective fork for compensating users against
faults of the stakers/operators, rather than just being limited to only punishing them.

EIGEN unleashes more open innovation. EigenLayer enables anyone to create new Actively Validated Ser-
vices (AVS) that have objective slashing conditions to incorporate security from ETH by being able to slash
ETH. However, a significant limitation is that if the AVS had a digital task that involves intersubjective fault,
it can’t resort to the cryptoeconomics of ETH, without creating the tyranny-of-majority problem. In this work,
we create the first universally intersubjectively slashable system so that stakers can make a wide range of
commitments about the digital work that they perform. This enables a wide range of new AVSs to utilize
the cryptoeconomics of EIGEN without being capped to their own economic value. We envision a renaissance
in the design of new services structured as AVSs utilizing EIGEN cryptoeconomic security, in addition to ETH

security. Any Actively Validated Service (AVS) on EigenLayer that has intersubjectively attributable digital
faults can now obtain the cryptoeconomic safety guarantee of EIGEN. To make the faults intersubjectively at-
tributable, the AVS may need to focus on developing robust monitoring infrastructure including light clients.
This can lower the cost-of-monitoring, ensuring that there will be a wide net of community members from
EIGEN’s social consensus who will be operating the AVS’s light node software for monitoring the EigenLayer
operators that have opted into the AVS.

2 Core Idea

The main question we wish to address is whether we can extend cryptoeconomic security to digital tasks
on EigenLayer in the context of intersubjective faults. We answer this question in the affirmative by creating
EIGEN: the universal intersubjective work token.

2.1 Chain forking in Ethereum

Before we get to the description of the protocol on how to get cryptoeconomic security for intersubjectively
attributable tasks, we glean some critical insights on how we escape the problem of the tyranny-of-majority
in existing protocols like Ethereum. Ethereum has been a leader in recognizing the importance of the fact
that the security of any blockchain is comprehensively inherited from two factors:

• Cryptoeconomic security that is obtained from the stake deposited by the validator set as part of
participating in the proof-of-stake (PoS) protocol, and

• Layers of social consensus which surround and moderate the objective consensus mechanisms of the
blockchain. Each layer of social consensus reveals a form of watching the watcher.
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We can easily distinguish three layers of consensus that are integral to the operation of Ethereum:

1. Chain Validity

(a) which rule for determining the validity of a given chain of blocks is to be used.

(b) whether a given chain of blocks is valid, according to a given validity rule (see [11] for details).

2. Chain Liveness

(a) what rule to follow if new valid blocks are not being proposed or attested.

3. Chain canonicity

(a) which chain of blocks, valid under a given validity rule, constitutes the canonical chain at a given
point in time.

While it might seem that a majority of Ethereum validators would have carte-blanche power to determine the
content of the canonical chain completely, this is not true. Suppose that the majority of Ethereum validators
were to turn malicious and collude to either double-sign off on a block to do a reorg2 or engage in liveness
attack by refusing to sign on any new blocks for at least an observable period3. This would set in place the
following sequence of events:

1. Any validator not a part of the colluding set would reject any invalid blocks under the current validity
rule while continuing to propose and attest to valid blocks.

2. Depending on the type of attack being executed, the Ethereum’s social consensus can intervene to reject
the block:

• Incorrect state transition is an objectively attributable fault that is proactively observable. Any
honest validator or any user can verify the correctness of state execution themselves by re-executing
the block.

• Building blocks that are in conflict with any weak subjectivity checkpoint is a proactively observ-
able objective fault. Any honest validator or user can outright reject such blocks.

• Double-signing on finalized blocks is an objectively attributable fault but only retroactively observ-
able. Any honest validator or a user in the social consensus, when given evidence of a validator
having attested to block headers for conflicting blocks, would be able to objectively attribute the
fault.

• Liveness attack against chain growth is an intersubjective attributable fault with concurrent ob-
servability. Therefore, those users in social consensus who are active at the moment when the
attack is being executed and are able to tap into the P2P network of Ethereum by themselves or
via someone they trust will be able to detect the attack4.

3. In order to provide a cryptoeconomic guarantee against the above attacks, there are two distinct provi-
sions for slashing in Ethereum [12]:

• in the event of chain forking due to double-signing on finalized blocks, Ethereum offers the provi-
sion to slash the offending validators by including transactions for slashing the adversarial valida-
tors.

• in the event of chain forking contingencies due to a liveness attack, Ethereum has a special pro-
vision of “inactivity leak,” wherein the colluding validators that are not proposing or attesting to
new blocks can be slashed over the course of time [13].

This fund to slash the adversarial validators comes from the stake that was deposited as part of staking
with Ethereum, thus lending to cryptoeconomic security.

4. In either case, if the social consensus of Ethereum agrees with a fork of the chain where the slash-
ing is happening, then that fork would end up being perceived as the canonical fork, which lends to
cryptoeconomic security against the adversary.

5. The digital assets of the other fork would be excluded from any interface between onchain and offchain5

and their market value would trend to zero.
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Figure 3: A high-level overview on how intersubjective staking in EigenLayer resolves intersubjective faults
without overloading ETH’s social consensus. Fig (a) illustrates how Ethereum’s social consensus resolves any
violation of chain validity despite majority collusion in the validator set. Fig (b) illustrates how extending
restaking to resolve anything beyond objectively attributable faults would overload Ethereum’s social consen-
sus, thus violating Ethereum’s setup phase. Fig (c) illustrates that intersubjective staking with EIGEN utilizes
token forking to resolve any intersubjective attributable fault.

Thus, on inspection, we find that the influence of Ethereum validators ultimately extends only to determining
which of any possible set of valid blocks should be added to the canonical chain at each moment in time. In
particular, we see that there exists an easily overlooked but powerful social consensus that decides whether
to uphold the fork where slashing is happening as canonical or not. See fig. 3(a) for an illustration. This
is an illustration of how social consensus is protecting the Ethereum ecosystem from a tyranny-of-majority
of Ethereum’s validator set. Unlike the set of validators staked on the chain, a key observation is that the
coverage of social consensus is the set of all possible observers, and is an unsized and potentially infinite set.
Even if all the nodes that are running the software agree on a malicious fork, new nodes that come in might
detect this problem and choose only to build on the fork perceived as canonical by the social consensus. Thus,
truth becomes a self-enforcing equilibrium and becomes nearly impossible to take over by an adversary.

2.2 The Two Phases of Intersubjective Agreement

Systems that utilize intersubjective agreement usually proceed in two phases. There is a setup phase, in which
the rules of intersubjective agreement are codified, and then there is a second phase, called the execution
phase, in which the pre-agreed rules are executed. As a first example, consider the establishment of a modern
nation-state. The setup phase comprises codifying a constitution, which all later laws must then follow. The
execution phase then requires the creation of laws, which must comply with the Constitution. The clearer the
Constitution is, the easier it is to agree on whether a given law complies with the Constitution.

Let’s take blockchains as a second example. The setup phase for blockchains involves specifying the fork-
choice rule of the consensus protocol (for example, the longest chain rule specifies that the current block

2Incorrect state execution is not a problem as any honest validator running full node can inspect the correctness immediately.
3Note that one doesn’t need collusion among majority of Ethereum validators for executing either of the attacks. As long as more

than 33% of stake is colluding, then either of the attacks can be executed. We are considering ”majority corruption” here to illustrate the
power of social consensus.

4Here we are assuming that there is no partitioning of the underlying P2P network.
5Examples are exchanges, real-world shops where crypto is accepted as a medium of exchange for physical goods, etc.

7



Figure 4: An illustration of the setup and execution phase for for different scenarios in government settings
and blockchain settings.

is the tip of the longest chain of blocks). In the execution phase, any node can now identify, based on its
observed blockchain, the current block. Thus, the setup phase requires consensus, and later, the execution
phase requires purely local information. This is an example of a powerful intersubjective system, as there
is little ambiguity left in the execution phase. As a more complex example, in a proof-of-stake blockchain,
there are two distinct consensus rules possible: (i) light-node-rule: accept any block header signed by 67% of
the nodes, or (ii) full-node-rule: accept only blocks that you can download and that are valid and that are
signed by 67% of the nodes. It is pre-agreed in the setup phase of the blockchain that the full-node-rule is the
real rule, and the light-node-rule is a proxy, so when there is a disagreement between the two rules, nodes
already know that they should go with the full-node rule during the execution phase.

As another complex example, consider two distinct kinds of rollups: (a) standard rollup, where the setup
phase defines the current block in the chain as the latest valid block written to the bridge contract, and a (b)
sovereign rollup, where the setup phase defines that the current block in the chain is the latest valid block
written to the bridge contract, except if it is reverted by social consensus. In the standard rollup case, the execu-
tion phase is totally self-evident: each node can find the current block directly without requiring to talk to
each other. In the sovereign rollup case, the nodes are required to talk to each other in order to know if social
consensus has reverted that block or not. The more an intersubjective system makes the execution phase
self-verifiable, the stronger the intersubjective cohesion is, i.e., participants will agree on the right version of
the world more easily. If too much coordination is required during the execution phase, it is possible for the
system to experience intersubjective fracture, i.e., participants disagree on the right version of the world.

2.3 Extending the power of social consensus beyond chain validity via Forking Token

Ethereum’s social consensus. As described in sec. 2.1, Ethereum’s security comes from a combination of
cryptoeconomics of slashing of stake and social consensus. Given the benefit of using Ethereum’s social
consensus to resolve any take-over of Ethereum’s validator set to attack chain validity, an immediate ques-
tion would be whether the usage of Ethereum’s social consensus can be extended beyond chain validity
and liveness. One example of services that can benefit from using Ethereum’s social consensus to resolve
tyranny-of-majority is any generic tasks where faults are intersubjectively attributable in nature (see sec. 1.2
for details). Examples of such tasks are oracles or data availability (see sec. 1.2). In such services, fraud can’t
be attributed objectively by submitting any fraud proof or ZK proof as part of the execution of the chain state.
However, fraud is subjectively visible to any outside observer. As a concrete example, if an oracle reported
that 1BTC equals 1USD, which is far from the real truth, this fraud is obvious from the outside. A naive solution
extension would be to require Ethereum validators to participate in such services (for example, the validators
vote on price feeds as part of the block proposal) and assume the (super-)majority of Ethereum validators
are honest. In case of an adversarial take-over of the majority of Ethereum validators to break this oracle, the
social consensus of Ethereum would be expected to subjectively step in to resolve the tyranny-of-majority of
the Ethereum validator set. However, the setup phase for Ethereum stipulates the usage of its social consen-
sus only for violation in the context of chain validity and chain liveness. This ensures that Ethereum’s social
consensus is used only sparingly. Any effort to extend the usage of Ethereum’s social consensus for resolving
tyranny-of-majority in additional digital tasks will be a violation of the thesis of not overloading Ethereum’s
social consensus that was agreed upon in Ethereum’s setup phase [14]. See fig. 3(b) for an illustration.

Extending the power of social consensus. Our proposal to extend the benefit of social consensus in resolving
tyranny-of-majority without overloading Ethereum is as follows:
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• Restaking: Tap into Ethereum’s security only for resolving objectively attributable faults. Recall that
Ethereum’s security comes from the combination of staking, slashing, and Ethereum’s social consensus.
Any digital task where fault can be objectively attributed and malicious operators can be penalized
programmatically within EVM should use ETH restaking in EigenLayer to tap into the deep pool of
security offered by Ethereum. In such tasks, the mechanism for dispute resolution can be programmed
within the chain state as a smart contract6. Correct execution of the dispute resolution is subsumed into
chain validity. Therefore, cryptoeconomic security for digital tasks with an objectively attributable fault
can uniquely tap into Ethereum’s cryptoeconomic guarantees without overloading the social consensus
of Ethereum.

• Intersubjective staking: Tap into EIGEN’s social consensus for resolving intersubjectively attributable
faults. The core idea of EIGEN is to recognize that the principle of intersubjectivity can apply to digital
tasks other than that of the chain itself. In particular, EIGEN expands the idea of subjective choice
from choosing a fork of chain to choosing a fork of token for tasks that have faults intersubjectively
attributable in nature. Resolving any potential faults in such tasks due to tyranny-of-majority requires
the use of the technology of social consensus. In such tasks, EIGEN offers the tooling for unconditional
slashing of the EIGEN staked by malicious operators on EigenLayer by tapping into the power of EIGEN’s
social consensus to canonize the fork of EIGEN token that penalizes the malicious operators.

2.3.1 The structure of Forking Tokens

The core problem with intersubjective faults is that the right answer is unknown inside the reference frame
of blockchain, whereas from the vantage point of observers outside the system, the right answer is known.
The system needs to have a way to utilize this exogeneous information to impose a cryptoeconomic penalty
on the violators.

First, we highlight an example of a forking token based on prior work [6, 4] and its implementation, [7]. Au-
gur has an ERC20 token called the REP token (short for reputation), a forking token. The REP token is staked
to report what happened in the real world to resolve the results of prediction markets (where the answer is
binary, i.e., true or false). The REP token holders are slashed if they disagree with a majority of token holders,
but if a certain-sized minority of REP holders dissent, they can initiate a forking event. The forking event
now creates two ERC20 tokens, each of which represents a new forked version of the token corresponding
to true/false (let’s call it REP1 and REP2, say). Every REP holder now has to decide if they want to choose
REP1 and REP2 tokens. Furthermore, future Oracle users (prediction markets) need to specify whether they
want to utilize REP1 or REP2 as the token staked. Similarly, exchanges and other financial services will need
to choose between REP1 and REP2. The set of players involved in valuing whether REP1 or REP2 is the right
fork is not fixed, and a priori known, set. All of these together ensure that if REP1 clearly represents the
truthful answer, then everyone will choose it, and all of the values of REP will filter into REP1. This will
make the value of REP2 go to zero. If this were not the case, the whole machinery of the market can then
be leveraged (for example, short the wrong fork) and can be engaged permissionlessly to get the market to
converge on the right answer. One way of thinking about this token model: it utilizes market forces to ensure
that everyone converges to the intersubjective truth.

We note that while Augur made major progress in how to induce cryptoeconomic penalty for intersubjective
faults, many open problems remain:

1. Specialization: Because Augur was application-specific (focused on prediction markets), it had a simple
mechanism to measure the total value at risk (profit-from-corruption). Generalization beyond this
special example requires a mechanism to solicit the value-at-risk for arbitrary computaion.

2. Fork-aware: Every holder of the REP token needs to be aware of forking and claim the right version of
REP1 or REP2 tokens, even if they were not participants in the oracle.

3. Parasitic (free-riding) behavior: It was possible for other protocols to build parasitic prediction markets
on top of the prediction market. More severe than the Augur protocol losing fees, the protocol loses
security properties in this setting.

In this paper, we design EIGEN to circumvent all these problems. The token achieves the properties of (a)
universality in being able to use the token for any intersubjective fault, (b) isolation of defi from forking, (c)
metering the cost of social consensus, and (d) compensating users for their loss due to faults.

6Any evidence of objective fault can be submitted as fraud proof to the chain. Here, the assumption is that at least one honest
participant in Ethereum’s social consensus will submit this evidence and will be accepted within the censorship-resistance period of
Ethereum.
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2.4 Universality of EIGEN token

In this section, we describe how EIGEN token achieves universality. There are two distinct components to this:
(i) conceptual universality and (ii) technical universality.

The Problem: Imagine someone stakes an existing ERC20 token and proclaims this token should be forked if
something bad happens in my newly designed oracle. This will not work because the token does not have the
setup phase to permit it. The setup phase of the ERC20 token comprises of what the people believe it will do
(the concept of the token), and what functionalities the token allows. Both of these parameters are fixed when
the token is created. We call this the setup phase of the token. If someone claims the token should be forked,
neither has this conceptual authority nor the technical ability (as forking the token will have downstream
consequences on other applications of the token, which cannot be containerized). We note that, even when
the token has some amount of functional universality, it may not have conceptual universality: for example,
even though the REP token is forkable, it will not fork for other applications. The social consensus around
the REP token has been created for utilization in the prediction market when it was setup.

The core setup of the EIGEN token will be that it will be the universal intersubjective work token. This means,
that when this token is staked in EigenLayer and stakers opt into covenants from AVSs, the token has concep-
tual universality to fork for this purpose if the stakers are viewed as malicious. We note that the setup phase
of the token should also specify where each AVS specifies its slashing conditions, as these can be thought of
as amending the setup.

Exclusions: The EIGEN token is designed to adjudicate faults where there will be near-universal agreement
among observers, i.e., where there is intersubjective consensus. It is not designed for problems which are
highly subjective in nature. Examples of excluded types of interactions include “what is the predicted price
of this NFT in 20 days?”, or ”Is Paris the most beautiful city?”.

A grounding principle in the EIGEN token is to ”slash stakers” only when their fault is beyond a reasonable
doubt. Under these conditions, slashing requires large collusion as well as a large potential loss of funds,
and this suffices to ensure honest behavior. Thus we expect EIGEN forking to be a last-resort nuclear option, but
nevertheless one that is needed to ensure that the stakers behave correctly.

As EIGEN features its own social consensus for resolving intersubjective faults of intersubjective tasks, this
responsibility is now no longer being imposed on Ethereum’s social consensus, thus, not overloading it. Ac-
tively Validated Services (AVSs) on EigenLayer tap into the ETH quorum for objective faults but into EIGEN

quorum for intersubjective faults. See fig. 3(c) for an illustration. Now there could be forking in EIGEN for
resolving intersubjective faults without requiring forking the chain state of Ethereum itself.

2.5 Isolation between Staking and Fork-Unaware Applications

2.5.1 Existing PoS protocols

PoS protocols typically feature only a limited amount of their native tokens being staked at any given time,
while the remaining tokens are utilized for other fork-unaware purposes, such as DeFi or users holding the
staking token without deploying it. A similar scenario is expected to happen with EIGEN. In this section, we
will explain how the intersubjective (forking) nature of EIGEN makes the interaction complex. To understand
this interaction, we will understand the interaction in two existing protocols.

We note that in chains like Ethereum, the native ETH token forks along with the chain. So as long as the ETH

is deployed into DeFi protocols that are deployed in the same fork of the chain, the protocols always include
the right version of the ETH. We coin the term intersubjective frame-of-reference, in order to understand from
which frame forking is happening. Protocols and (standard) tokens that share the chain will fork together
when the underlying chain forks, so they can be said to inherit the intersubjective frame-of-reference from
the chain. With EIGEN, the token has its own intersubjective frame-of-reference, so if the token forks, DeFi
protocols may not know that it has forked, and will need to handle it with care. This consideration is shown
in Fig. 6a.

2.5.2 Solid representation: Isolation barrier between intersubjective staking and DeFi

Interaction between intersubjective staking of EIGEN and using EIGEN of DeFi is complicated. There can be
forking of EIGEN but there is no forking of the chain state of Ethereum and, by extension, the rest of the
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application layer on Ethereum. This leads to a complicated scenario where EIGEN’s social consensus has
agreed upon a new canonical fork, but the EIGEN which were locked in non-staking applications such as DeFi
would still represent the stale version of EIGEN token from before the fork. In order to solve this problem,
we propose creating an isolation chamber between the DeFi use cases of EIGEN and the staking use cases of
EIGEN. We consider EIGEN to have a solid representation if the tokens belonging to any fork of EIGEN can be
redeemed for the same number of tokens belonging to any of its descendent fork of the EIGEN token that the
holder desires. With solid representation, an EIGEN holder can afford to be inactive for an indefinite time or
be locked in long-term DeFi positions but still be able to redeem tokens from any of the descendent forks
that they agree with. This property is akin to saying that non-staking use of EIGEN can be unaware of any
fork in EIGEN. See fig. 6a for an illustration.

In order to achieve solid representation for EIGEN, we proposed an intersubjective forking protocol with two
tokens: EIGEN and bEIGEN (i.e., backing EIGEN). bEIGEN will be used solely for intersubjective staking and
EIGEN will be used for non-staking applications such as DeFi. The forking protocol is designed such that
EIGEN is a wrapper over bEIGEN with special clauses on when and how wrapping and unwrapping can be
executed which imparts the behavior corresponding to a solid representation. Even if bEIGEN is subjected to
intersubjective forking, any EIGEN holder who is using it for non-staking applications doesn’t have to worry
as it can redeem the forks of bEIGEN at any time later. For any developer of a non-staking application, as
long as their surface area of interaction with the intersubjective forking is limited to only using EIGEN, the
application can be agnostic of any intersubjective forking of bEIGEN.

2.6 Compensating for the Cost of Intersubjective Consensus

We observe that intersubjective (social) consensus incurs a cost, and if it is not metered properly gives rise to
two kinds of problems: (i) if it is free, then it might lead to griefing attacks, where someone tries to abuse
social consensus without incurring a cost, and (ii) if the users who participate in social consensus are not
sufficiently compensated, then it might lead to users not participating in it. These two problems lead to core
principles: (i) anyone who tries to fork the token should incur a cost, and (ii) some portion of the cost should
be distributed to users who participate in social consensus.

We formalize this by requiring two types of economic costs in the original token bEIGEN1 and the forked
token bEIGEN2:

• Deflation-per-fork (DPF). DPF represents the minimum fraction of total bEIGEN1 that should be tagged as
malicious (see sec. 2.7.2 for a description on this tagging) and burnt while creating the fork bEIGEN2. If
bEIGEN2 ends up being considered as the canonical fork, then each unit of bEIGEN2 would appreciate by

1
1−DPF multiplication factor. If the challenger intersubjective challenge isn’t slashing at least DPF fraction
of total bEIGEN1, then that challenge will not be considered legitimate.

• Commitment-per-fork (CPF). CPF represents the minimum fraction of total bEIGEN1 that needs to be
committed by the challenger to trigger the intersubjective challenge. Here, commitment refers to the
fact that the challenger will burn CPF fraction of bEIGEN1 so that they cannot access this portion of
tokens if the original token bEIGEN1 continues to be considered the canonical fork. The challenger will,
in return, be able to redeem these tokens if bEIGEN2 is the correct version of the fork. An important
point to note is that the challenger has to be convinced of the intersubjective fault that has happened
as it is burning its bEIGEN1 holdings and is betting on the value extracted from the bEIGEN2 that it is
receiving as part of the challenger reward. So, anyone harmed by the intersubjective fault in the AVS
has the highest incentive to raise the challenge.

Both the parameters DPF and CPF are enshrined in the setup phase of the EIGEN token. Setting the values of
DPF and CPF properly is critical to ensuring the system’s healthy functioning.

Here, DPF pays off the cost for the social consensus to switch from bEIGEN1 to bEIGEN2. This switching cost
comes in the form of the need for the social consensus to validate the claim of intersubjective fault, gas cost
of redeeming bEIGEN2, gas cost of against staking bEIGEN2, etc. On the other hand, CPF acts as a deterrence
against any adversary raising vacuous intersubjective challenge. Even in the case of vacuous intersubjective
challenges, anyone participating in the social consensus must verify the fault’s authenticity before rejecting
the challenge, which incurs a cost. CPF serves as a mechanism to pay off that social cost. See fig. 5 for an
illustration and sec. 3.3 for a detailed analysis on setting up the value for DPF and CPF.
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Figure 5: Simple illustration of CPF and DPF. Here bEIGEN2 is a fork of bEIGEN1 as a consequence of an
intersubjective challenge.

2.6.1 Setting values for CPF and DPF

CPF pays off for the social cost of a malicious fork, acting as a deterrent against an adversary raising vacuous
challenges and requiring everyone in the social consensus to verify the authenticity of the challenge and
reject it. If CPF is set too high, large off-chain coordination is needed to pool enough bEIGEN1 for raising the
intersubjective challenge. This sets an upper bound on the value of CPF.

On the other hand, DPF pays off the cost for the social consensus to switch from bEIGEN1 to bEIGEN2. This
switching cost comes in the form of the need for the social consensus to validate the claim of intersubjective
fault, gas cost of redeeming bEIGEN2, gas cost of against staking bEIGEN2, etc. Deflation is created because
some stakes are slashed in the forked token. Therefore, if DPF is set too high, it imposes a requirement on the
AVS that at least DPF fraction of stake is attributable and slashable when a fault happens on the AVS. This
sets an upper bound for DPF.

2.7 Overview of Protocol for Intersubjective Staking on EigenLayer

Next, we will provide a very high-level explanation of intersubjective staking on EigenLayer. Note that we
present the baseline design in sec. 2.7.1 for the purpose of only motivating the two-token design. We won’t
be ever implementing the baseline design.

2.7.1 Baseline Design

We start with a baseline design for the intersubjective protocol that features a single token model. Note
that this baseline design doesn’t offer solid representation, but we describe to motivate the necessity of a
two-token design. This is described as follows:

1. Intersubjective staking with EIGEN. Stakers stake the EIGEN for staking into EigenLayer. By staking
EIGEN, the staker is opting to respond to digital tasks and subjecting its stake to intersubjective slashing.
Here, EIGEN is an ERC20 token. The staking contract ensures that withdrawal from staking is subject to
a withdrawal lag - this lag is important as it allows a time period for the token to fork before affecting
other holders.

2. Intersubjective forking and intersubjective slashing. In order to raise a challenge against an intersub-
jectively attributable fault, the challenger must burn some amount of EIGEN and intersubjectively fork
EIGEN. Intersubjectively forking the EIGEN requires the challenger to deploy: (a) a new ERC20 contract
that represents a new fork of EIGEN (recall that the existing EIGEN was also an ERC20 contract) and, (b)
a fork distributor (FD) smart contract that specifies how stakers and other holders of existing EIGEN can
redeem tokens from this new ERC20 contract. We call this new ERC20 contract a fork of EIGEN. This FD
should allow stakers delegated to honest operators and the challenger to claim tokens from this new
fork of EIGEN, whereas stakers delegated to malicious operators should not be able to redeem tokens
from the new fork. For simplicity of explanation, we call the tokens from pre-forked EIGEN as EIGEN1
and post-forked EIGEN as EIGEN2.
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(a) Simple illustration of solid representation.

(b) A simplified illustration of V1. Here, bEIGEN2 is fork of bEIGEN1 after the intersubjective challenge is raised.

(c) A simplified illustration of V2. Here, bEIGEN2 and EIGEN2 are corresponding forks of bEIGEN1 and EIGEN1 after the
intersubjective challenge is raised. The red dot here represents the control for freezing wrapping.

Figure 6: Overview of the intersubjective forking protocol that is being enabled by EIGEN.
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3. Redemption mechanism. The FD also specifies how a non-staked holder can redeem the fork. Any
holder of EIGEN1 is able to redeem EIGEN2 by locking their EIGEN1 in the FD of EIGEN2 for a period of
Tlock slots. This redemption is permitted for a period of Tredeem slots after the attack has happened. Note
that here it is necessary to have Tlock > Tredeem in order to avoid the issue of double redemption7.

By including the details on who is not able to redeem EIGEN2 tokens, the challenger is effectively slashing
certain existing stakers who had staked EIGEN1. This slashing is intersubjective in nature as others might not
agree with the challenger and can ignore the EIGEN2. In such a case, EIGEN1 will continue to be held as the
canonical fork of EIGEN by the social consensus. Therefore, we call such a slashing as intersubjective slashing.
Ideally, the challenger should deploy the EIGEN2 and its FD after deliberation with the rest of the social con-
sensus.

Baseline design lacks ”solid representation.” The baseline design lacks ”solid representation.” If an EIGEN1
holder is not active for the period of Tredeem slots after the malicious attack was executed by operators, then
the holder will never be able to redeem EIGEN2. Therefore, the baseline design doesn’t offer a solid represen-
tation. In the next few sections, we will give a high-level outline of an intersubjective forking protocol that
will progressively achieve this property. We also want the intersubjective protocol to be resilient against mali-
cious behavior of the security council8 of the staking contract. Towards that end, we will start by describing a
protocol V1 that guarantees neither solid representation nor is safe against corruption of the Security Council
but lays the foundation of the eventual protocol that guarantees both these properties. We build V2 on top of
V1 and it guarantees solid representation. Finally, in V3, we achieve resilience against the malicious behavior
of the Security Council.

2.7.2 V1: Two-token model for the intersubjective staking protocol

Following is the high-level overview of the V1 version of the intersubjective forking protocol on EigenLayer.
For a full description of V1, please refer to Appendix. A.1.

1. There are two separate tokens: bEIGEN (backing EIGEN) is used for staking while EIGEN is used for
non-staking purposes, such as DeFi. The bEIGEN can be subjected to forking. Both bEIGEN and EIGEN

are ERC20 contracts. The latter features governance that decides which fork of bEIGEN is configured to
back the EIGEN.

2. Wrapping and unwrapping. Anyone can instantly wrap 1 bEIGEN to 1 EIGEN and vice versa. Only
the current fork of bEIGEN backing the EIGEN will be considered for wrapping and unwrapping (see
sec. A.1.3 for details).

3. Triggering the intersubjective forking.

(a) Social-deliberation. During their respective setup phase, each AVS must specify and implement
a social-deliberation mechanism that anyone can use (a) for raising the alarm among the EIGEN’s
social consensus about any intersubjective fault during the execution phase and/or (b) for subse-
quent deliberation to resolve the intersubjective fault. In the event of a ”potential” intersubjective
fault during the execution phase, anyone would be able to alert the social consensus of EIGEN

about the fault. At the end of the mechanism, all the honest members of the social consensus who
actively participated should be able to form their own subjective opinion on whether the fault is
genuine, converge on who the culprits are, and agree on who will be responsible for raising the
challenge9

(b) Challenge. Raising a challenge requires launching a new ERC20 contract representing a fork of
bEIGEN, a new challenge contract for the new fork, a new fork-distributor (FD) contract specifying
which operators were malicious and how much the challenger will be rewarded. For explanation
purposes, we refer to the pre-forked bEIGEN as bEIGEN1 and post-forked bEIGEN as bEIGEN2. The FD
of bEIGEN2 must prevent the bEIGEN1 stakers delegated to operators identified as malicious/culprits
during the fork-choice mechanism from being able to redeem bEIGEN2. Furthermore, the challenge

7By ”double redemption,” we mean that for the same 1 unit of EIGEN1 token, the holder or staker shouldn’t be able to redeem more
than 1 unit of EIGEN2 token.

8We partition the governance of the staking contract into two parts: (1) governance for regular contract upgrades for adding new
features and will have lags in place for these upgrades, (2) security council for triggering emergency upgrades or pausing. Clearly, the
security council has a lot of power.

9The challenge against an attack needs to be raised within a limited window of length Tchal after the attack was socially agreed to
have happened. There is potentially a need for the feature of a buffer period in the event that the selected challenger doesn’t raise the
challenge. In this buffer period, anyone should be able to raise the challenge.

14



must tag at least DPF fraction of total bEIGEN1 as malicious. The challenger is also required to
submit a bond that amounts to at least CPF fraction of total bEIGEN1 tokens. See sec. A.1.2 for
details10 on the forking and see sec. 2.6 for details on CPF and DPF.

(c) Configuring the EIGEN contract. If the challenge is correct from the perspective of the governance
of EIGEN, the governance then must queue an upgrade transaction to reconfigure EIGEN to be
backed by bEIGEN2. This upgrade gets executed after a lag. See sec. A.1.3 for details.

4. Redemption clauses.

(a) For bEIGEN active stakers/holders. After the challenge is raised, there is a redemption period
during which any bEIGEN1 staker or holder and the challenger could redeem bEIGEN2. See sec. A.1.4
for details.

(b) For EIGEN holders. Any EIGEN holder locked in a long-term position in DeFi or inactive can trust
EIGEN’s governance for selecting the canonical fork of bEIGEN. If the EIGEN holder disagrees with
the EIGEN governance’s decision to reconfigure, the holder can unwrap to bEIGEN1 within the lag.
If the EIGEN holder disagrees with the EIGEN governance’s decision not to reconfigure, the holder
can unwrap to bEIGEN1 within the redemption period and redeem bEIGEN2. See sec. A.1.5 for
details.

5. Staking and Withdrawal. Anyone can either use the UI to stake EIGEN or directly deposit bEIGEN with
the staking contract. Under the hood, using the UI first unwraps EIGEN to the fork of bEIGEN that the
EIGEN contract is currently configured to and then deposits the bEIGEN with the staking contract. An
opposite flow is executed in the case of withdrawal. Staking is not subjected to any lag while withdrawal
is subjected to a lag. See sec. A.1.1 for details.

See fig. 6b for a high-level illustration.

Assumptions needed for security. V1 makes the following assumptions:

1. Either Governance of EIGEN wrapping contract is honest, or, EIGEN holders are engaged in non-staking
activities and have not locked their token for over a certain period.

2. Security council governing EIGEN staking contract is honest.

V1 doesn’t offer solid representation. Elaborating more on the first assumption, in the event of a recon-
figuration decision by EIGEN wrapper’s governance with which an EIGEN holder disagrees, the holder has
a limited period to unwrap its EIGEN tokens to the bEIGEN fork of its choice. This leads to a lack of solid
representation in V1. For example, after there was a fork from bEIGEN1 to bEIGEN2, consider that EIGEN wrap-
per’s governance decides to reconfigure to bEIGEN2 and queues an upgrade that will be executed after the
governance lag. If the EIGEN holder disagrees with the governance decision but is locked in a DeFi position
that will be unlocked only after the governance upgrade is executed or is inactive during this period, the
EIGEN holder won’t be able to unwrap to bEIGEN1 before its EIGEN gets backed by bEIGEN2. Now, consider an
opposite scenario where the EIGEN wrapper’s governance makes the decision not to reconfigure to the new
fork bEIGEN2, but the EIGEN holder disagrees with that decision. If the EIGEN holder is inactive or locked in a
long-term DeFi position that will be unlocked only after the redemption period of bEIGEN2 is over, the EIGEN

holder will not be able to redeem bEIGEN2 ever.

Trust assumption on Security Council. Furthermore, there is a trust assumption on the Security Council of
the staking contracts. The Security Council can arbitrarily change the unstaking period in staking contracts
and steal value from the staked bEIGEN tokens. We will remove these shortcomings in the next two versions
of the protocol.

With some additional upgrades in V2, as described in the next section, solid representation can be achieved.

2.7.3 V2: Getting solid representation

In addition to the features described for V1, we propose certain new features to achieve solid representation
in V2. For a full description of V2, please refer to Appendix. A.2.

1. Wrapper-fork. The wrapper contract EIGEN is now an immutable contract; that is, it has no gover-
nance. This immutability requires that the wrapper EIGEN contract can now also be forked socially,

10See sec. 3.3.3 for details on cryptoeconomic guarantees around multiple AVSs using intersubjective staking
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just like bEIGEN. A legitimate intersubjective challenge now also requires forking EIGEN by deploy-
ing a new ERC20 contract, which is in addition to the requirement from V1. We call this forking of
EIGEN wrapper contract as wrapper-forking. For explanation purposes, we refer to pre-forked EIGEN and
bEIGEN as EIGEN1 and bEIGEN1, respectively, and post-forked EIGEN and bEIGEN as EIGEN2 and bEIGEN2,
respectively. See sec. A.2.2 for details.

2. Freeze wrapping. Raising an intersubjective challenge now also requires freezing any further wrapping
of bEIGEN1 to EIGEN1. See sec. A.2.1 for details.

3. New redemption clause for passive users. Suppose an EIGEN1 holder unwraps to bEIGEN1 anytime
after the redemption period of bEIGEN2 is over. This unwrapping action is recorded in the storage of the
EIGEN1 contract. Now, this holder can just submit the proof of this unwrapping to the FD of bEIGEN2
for redeeming EIGEN2. See sec. A.2.4 for details.

See fig. 6c for a high-level illustration.

Achieving solid representation. With the additional redemption clause in V2, an EIGEN1 holder can now
choose to be inactive for a long time or be locked in long-term Defi positions. In the event of a fork, when the
EIGEN1 holder comes back online or gets back its EIGEN1, the holder can still redeem EIGEN2 if it agrees with
the fork. The holder can just unwrap its EIGEN1 to bEIGEN1 and use the pointer to that unwrapping action to
redeem EIGEN2. See sec. C for details.

In Appendix. A.2.6, we provide examples of how DeFi protocols like lending protocols and DEXs can interact
with the EIGEN’s solid representation that is being enabled by V2.

2.7.4 V3: Making intersubjective staking protocol resilient to corruption of security council

With respect to V2, V3 features a modification in staking and withdrawal to make the protocol resilient to
corruption in the security council.

Staking and Withdrawal. Depositing bEIGEN to the staking contract requires depositing the bEIGEN tokens to
an immutable gateway contract with a fixed unstaking period. The gateway contract holds the bEIGEN tokens
and notifies the staking contract about the deposit which only does accounting. Any withdrawal from staking
would be subjected to an immutable unstaking period by the gateway contract. In the event of corruption
of the Security Council, anyone can submit a bond to raise a challenge in the gateway contract that freezes
all withdrawals. The bond should amount to at least the social cost of disruption due to the freezing of all
withdrawals.

For further details on the full description of V3, please refer to Appendix. A.3.

2.7.5 Summary

The following table summarizes the differences between different protocols:

Solid representation Resilient against a malicious security council?
V1 No No
V2 Yes No
V3 Yes Yes

3 Intersubjective Staking for Actively Validated Services

EigenLayer enables services beyond consensus to inherit security from a shared security system, which com-
prises a pool of stake as well as operators, who are equipped to run various software. These services are
called Actively Validated Services (AVSs) and there is a wide variety of AVSs, including new chains, data
availability (DA) layers, oracles, verifier-as-a-service, fast-finality-layer, and coprocessors.

In this section, we talk about how EigenLayer can be used to share security across AVSs using intersubjective
staking. When an intersubjective token such as bEIGEN is staked, in the event of a fork in bEIGEN, the AVS
has to decide whether it wants to accept the new fork of bEIGEN or not. This leads to a new complexity not
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present when staking objective tokens like ETH and other ERC20 tokens in EigenLayer.

In the next section, we consider the case when there is only one AVS using bEIGEN for intersubjective staking
and describe how this AVS handles forking of bEIGEN. For the purpose of explanation, we represent the
canonical bEIGEN before the intersubjective challenge as bEIGEN1 and the new fork of bEIGEN arising out of
the challenge as bEIGEN2.

3.1 Single AVS with Intersubjective Staking

Figure 7: An illustration of how AVSs would handle intersubjective forking,

Consider a single AVS built on the intersubjective staking of bEIGEN. We note that in the two-token system
explained earlier, bEIGEN is the staking token, which needs to be fork-aware, and EIGEN is the fork-unaware
token, which can be used in non-staking applications. Let us consider the initial case where bEIGEN1 is staked
into a single AVS and no other AVSs are present.

Suppose that some of the stakers are attributed to having participated in an intersubjective fault in the AVS.
This results in bEIGEN1 being subjected to an intersubjective challenge, and a new fork bEIGEN2. The gov-
ernance of the AVS now needs to make a decision on whether to accept bEIGEN2 for intersubjective staking
or not and to enact that policy at the smart contract level. At any point in time, it is natural for the AVS
governance to accept only one fork of the bEIGEN depending on whether the forked token is correct or the
original one is correct.

Assume that the governance of the AVS agrees with the intersubjective challenge and the forking. See fig. 7

for a timing diagram. In order to ensure that the stakers have enough time to redeem bEIGEN2 and opt into
the AVS with the new bEIGEN2 quorum, there is a need for governance lag before the AVS starts accepting
bEIGEN2. Furthermore, the lag before opting into a fork ensures that AVS users who do not agree with the
fork can gracefully move on to a different AVS that actually accepts the correct fork. Therefore, the AVS
governance must make an announcement that after Tredeem slots since the attack was executed:

After Tredeem slots from the attack, the AVS will accept only bEIGEN2 stake (instead of bEIGEN1).

The governance will have to queue a governance upgrade for this decision soon after the intersubjective
challenge of bEIGEN is finalized on Ethereum and this upgrade will be executed at Tredeem slots from when
the attack was executed. During the interval of Tredeem slots since the attack happened, any bEIGEN1 staker
who agrees with the intersubjective challenge will be able to redeem bEIGEN2 from its associated FD and then
again stake with EigenLayer and opt into the AVS. On the other hand, those bEIGEN1 stakers who don’t agree
with the AVS governance’s decision would be able to simply opt out of the AVS.

In the intervening period, bEIGEN1 stakers are still responsible for running the AVS. This is important, because,
in case the challenge is malicious and the AVS governance is malicious, the AVS users are still protected by
bEIGEN1 staking. On the other hand, if the challenge and the AVS governance are correct, then the bEIGEN1
stakers may engage in continued malicious behavior. Therefore, when performing a cryptoeconomic analysis,
it is important to ensure that the penalty incurred by the bEIGEN1 stakers is greater than the harm that they
can inflict throughout this Tredeem period.
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3.2 Defintions of Cryptoeconomic Safety

We first begin with the definition of cryptoeconomic safety which is inspired from [7, 10] and expanded in
[15].

Cryptoeconomic Security

For any attacker, the maximal profit extractable from attacking the safety (profit-from-corruption) is
smaller than the minimum cost enforced by the system on the attacker (cost-of-corruption).

However, it suffers from a fundamental problem: the profit-from-corruption is non-measurable. The adver-
sary may have perverse incentives outside the system’s locus of measurement. Furthermore, this notion does
not guarantee that the user actually gets compensated for the value that the user lost if the attack happened.

In [15], a new notion of strong cryptoeconomic safety is defined:

Strong Cryptoeconomic Security

Any user should be compensated a pre-specified amount in the event that the safety guarantee to the
user is violated.

Since this definition models the user’s guarantee in case the system breaks its guarantee, it does not depend
on extraneous assumptions about the adversary’s goals and exogenous interests. In [15], it is shown how to
achieve this property for an onchain observable fault. In the following sections, we will create mechanisms
that achieve these two properties in succession.

3.3 Cryptoeconomic Analysis of Intersubjective Staking

In this section, we will analyze the cryptoeconomic guarantees of the intersubjective staking continuing on
the single AVS case.

3.3.1 Pooled security for Single AVS

In the case of when there is only a single AVS using the EIGEN quorum, profit-from-corruption is computed
by evaluating the total cost that all the consumers on top of the AVS will incur in a period of length Tredeem
slots if the malicious operators attack. We note that this is because, the AVS is allowed to switch to a different
quorum only after the Tredeem slots, which is important to ensure AVS users are protected in case of a mali-
cious challenge (see sec.3.1 for details). In case the challenge is correct, though, the malicious operator with
bEIGEN1 stake can continue to attack the AVS during this period.

Therefore, for the AVS to be considered to be cryptoeconomically secure, it is essential that:

Cost-of-corrupting the AVS ≥ Profit-from-corrupting the AVS in any interval of length Tredeem slots (1)

The cost of corrupting the AVS is measured by the amount of stake that is slashable. For any AVS, it is
possible to calculate the fraction of stake that is attributable as malicious if there was any safety violation
in the AVS. We call this parameter Fraction-slashable-for-AVS, emphasizing that this parameter depends on
the structure of the AVS. For example, for a standard BFT consensus protocol with quorum threshold 2

3 , the
Fraction-slashable-for-AVS is 1

3 [16]. Therefore, we have:

Cost-of-corrupting the AVS = Stake slashable for AVS safety failure
= Fraction-slashable-for-AVS × Amount-staked (2)

Recall that cost-of-corruption is the cost incurred by any adversary to attack a system. From the definition
of DPF, it is evident that the adversarial stake can be slashed in an AVS only if at least DPF fraction of total
bEIGEN1 has behaved maliciously in the AVS. Therefore, we must have

Fraction-slashable-for-AVS × Amount-staked ≥ DPF× Value(bEIGEN1), (3)
⇐⇒ Fraction-slashable-for-AVS × Fraction-staked ≥ DPF. (4)

Satisfying this condition will ensure that a ”socially” legitimate intersubjective challenge can be raised to
slash adversarial bEIGEN1 stake via intersubjective forking.
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3.3.2 Attributable Security for Single AVS

An important caveat for pooled security is that it is not possible for the EigenLayer protocol to know the
profit-from-corruption for the AVS. So, there is no in-protocol guarantee whether the security invariant in
eq. 1 is satisfied. Moreover, assuming eq. 1 is satisfied, even if the malicious operators’s stake is slashed in the
event of an attack, there is no redistribution to the harmed parties: AVS and consumers of AVS. Therefore,
we would like to improve the mechanism to achieve strong cryptoeconomic security, i.e., honest AVSs should
be compensated a pre-specified amount if the safety of the AVS is compromised.

Consider that there is a legitimate intersubjective forking from bEIGEN1 to bEIGEN2. See fig. 8 for an illustra-
tion. In the pooled security model, all of the adversarial stake is slashed and burnt. Instead, in the attributable
security mechanism, only a fraction of the adversarial stake is burnt by the FD of bEIGEN2 (that is, it remains
non-redeemable under bEIGEN2’s redemption mechanism). Instead, the remaining adversarial stake is redis-
tributed to the harmed AVS. In the general case of multiple AVSs, a mechanism is needed to apportion the
redistribution across the various AVSs. However, in the case of a single AVS, all of the redistributed funds
will obviously go to that AVS.

Even though redistribution is the key property we seek here, the mechanism ensures that a portion of adver-
sarial stake is burnt during the fork. This is necessary for mitigating any griefing attack, where an adversary
represents all the malicious stake but also holds redistribution claims for the AVS, thus making sure it does
not suffer any loss. This strategy becomes unprofitable with the burning mechanism as a portion of the stake
is burnt and not returned to the redistribution. Furthermore, a portion of the stake has to be burnt to satisfy
the deflation condition for the fork and pay off the social cost of forking.

DPF× value(bEIGEN1) ≤ γburn × Stake-slashable. (5)
⇐⇒ DPF ≤ γburn × Fraction-slashable-for-AVS × Fraction-staked (6)

When slashing happens, out of the amount slashed, γburn is burnt and γ = 1 − γburn is redistributed to the
AVS. Therefore

Attributable-security = γ × Stake slashable for an AVS safety fault (7)
= γ × Fraction-slashable-for-AVS × Amount-staked (8)

For the system to be strongly cryptoeconomically secure, we need the attributable security to be greater than
the harm that any user of the AVS can suffer during the entire Tredeem slots. This is because switching from
one fork of bEIGEN to the other incurs a delay of Tredeem slots, and the adversarial stake can cause harm
throughout this Tredeem period. Therefore, we require the following:

Formal Definition of Strong Cryptoeconomic Security

If an AVS acquires more attributable security than the harm it can suffer from an attack within Tredeem
slots, then it achieves strong cryptoeconomic security.

Attributable-security ≥ Harm-from-corruption for AVS in Tredeem slots. (9)

Example 1: As a simple example, consider a fast bridge AVS for a rollup, which has a (X, T)-rate-limit, i.e.,
that it does not allow more than X total transaction value in any T period. Now if the bridge had (X, Tredeem)
as the rate limit, then we know that the total value transacted by the bridge is less than X during any attack
period, and therefore the harm from corruption for the Tredeem period is less than or equal to X. If the
attributable security is greater than X then this AVS works correctly. For this example, we have the following
conditions for strong cryptoeconomic safety.

γ × Fraction-slashable-for-AVS × Amount-staked ≥ X. (10)

Example 2: Consider an oracle for price feed that requires any operator participating in the oracle to re-
spond with the price feed at every fixed time. These operators are required to stake bEIGEN1 in order to
participate in the oracle (we assumed that the pre-forked bEIGEN is called bEIGEN1 and post-forked bEIGEN

is called bEIGEN2). In the event that operators behave maliciously, which impacts the price-feed from the
oracle, then bEIGEN1 will be intersubjectively forked to bEIGEN2. Under attributable security, the oracle must
beforehand evaluate the profit that any malicious operators can extract by corrupting the price feed over the
next period of length Tredeem slots (here the oracle is designed not to pause when a challenge is raised but
instead continues to use bEIGEN1 as the stake until the redemption period of bEIGEN2 is over). The adversary
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Figure 8: Assume that there are 7 stakers with an equal stake of bEIGEN1 who are opted into the AVS and
self-delegated to themselves as an operator. Consider that staker 7 participated in an attack that successfully
corrupted the AVS. Here, γburn represents the fraction of the total stake delegated to an operator that is
earmarked for burning if the operator gets slashed. γ represents the fraction of the total stake delegated to
the operator that is earmarked to be claimable by the AVS in the event that the operator gets slashed in any
intersubjective fault of the AVS.

will extract this profit from the Dapps or co-processors who might utilize this corrupted price feed. The
oracle has to purchase attributable security equal to this profit every Tredeem slots (assuming this is less than
γ × Value of total number of bEIGEN1 staked). The oracle must utilize some form of circuit breakers to ensure
that, over the course of a period of Tredeem slots, the Dapps and co-processors who are sourcing their on-chain
price feed from this oracle can be harmed at max the attributable security that it purchased. This ensures all
users of the oracle are compensated for the harm that has been caused to them due to the attack.

3.3.3 Multiple AVS Case: Synchronized Quorum Forking

One of the core features of EigenLayer is using the same stake to secure multiple AVSs. This enables capital
efficiency while ensuring that the cost-of-corruption in EigenLayer remains greater than the profit-from-
corruption. We want to have a similar feature for intersubjective staking.

Consider that there are multiple AVSs that are using bEIGEN1 as their quorum for resolving intersubjective
faults in their AVS. Suppose that bEIGEN1 is subjected to an intersubjective challenge for a fault in one of the
AVS, say AVSk, which results in a new fork bEIGEN2. Consider any other AVS AVSj. If the governance of AVSj
agrees with both the intersubjective challenge in the context of a fault in AVSk and with the fork, then the AVSj
governance must make an announcement that:

After Tredeem slots from the attack, the AVS will accept only bEIGEN2 stake (instead of bEIGEN1).

This governance upgrade for this should be queued as soon as the transaction for the intersubjective chal-
lenge is finalized. The interesting thing with this policy is that all of the AVS switches to the new quorum at
the same time, which is Tredeem time slots after the attack.

There are many complex timing games, where an attacker may attack an AVS and then, while that AVS is
transitioning to a forked quorum (within the Tredeem period), attack a different AVS. We need to make sure
that this effect is accounted for in both cases - pooled security and attributable security.

In the next section, we will analyze the pooled security of intersubjective staking under multiple AVSs. There
is a general case of where some stakers opt into some AVSs. But, for the simplicity of explanation, here we
only consider Full Staking: every operator in the bEIGEN1 quorum is opted into every AVS. The set of AVSs
who are considered to be part of full staking are assumed to be whitelisted. We leave the analysis for the
general setting for future research.

3.3.4 Pooled Security for multiple AVSs under Full Staking

Let us assume that if an EigenLayer operator in the bEIGEN1 quorum behaves maliciously to participate in an
intersubjective fault in one AVS, then that operator’s bEIGEN1 stake is completely slashed and burnt.

Cost-of-corruption-for-AVSi = Fraction-slashable-for-AVSi × Amount-staked (11)
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Figure 9: Assume that there are 5 AVSs in full staking and there are 7 stakers with an equal stake of bEIGEN1
who have self-delegated to themselves as an operator. With full staking, all the 7 stakers have opted into
all the 5 AVSs who are using the EIGEN quorum for resolving intersubjective faults. If a staker behaves
maliciously as an operator in even one of the AVS, its full bEIGEN stake is subjected to slashing. Here, γburn
represents the fraction of the total stake delegated to an operator that is earmarked for burning if the operator
gets slashed. γi represents the fraction of the total stake delegated to the operator that is earmarked to be
redistributed to the AVSi in the event of the operator being slashed in any intersubjective fault across any of
the AVSs enlisted in full staking. Here, γ = ∑i γi and θi =

γi
γ .

To attack the system, the attacker must attack at least one AVS. Thus a simple bound says,

Cost-of-system-corruption = {min
i

Fraction-slashable-for-AVSi} × Amount-staked (12)

Hence the system is cryptoeconomically safe as long as the following security invariant is guaranteed:

Cost-of-system-corruption

≥ ∑
i∈A

Profit-from-corrupting AVSi in an interval of length Tredeem slots. (13)

We need to ensure that the amount slashed and burnt satisfies the DPF constraints for forking, i.e., the amount
burnt should be greater than a DPF fraction.

DPF× value(bEIGEN1) ≤ γburn × min
i

Stake-slashable-for-AVSi. (14)

⇐⇒ DPF ≤ γburn ×
(

min
i
{Fraction-slashable-for-AVSi}

)
× Fraction-staked (15)

3.3.5 Attributable Security for Multiple AVSs under Full Restaking

Because there are multiple AVSs, when slashing happens, we need a mechanism to know how to redis-
tribute/allocate the slashed fund across the different AVS. One example mechanism to provide attributable
security to an AVS is to make it proportional to the security fees paid by a given AVS over a past epoch pe-
riod. The security fees paid by AVSs to stakers and operators over an epoch period are observable on-chain
and so the attributable security held by the AVS is on-chain observable and computable. This is just one
example of implementing attributable security for intersubjective staking, but there can be other examples of
allocating attributable security.

We will now argue that it is insufficient to compensate only for the AVS that got attacked. If the protocol
does that, it is possible for an attacker to attack AVS1, and then wait for a fork of the token to be created with
redistribution only to AVS1, and then switch to attacking AVS2, etc. This leads to complex timing races between
the attacker and the challenger. We will now propose a simple mechanism that does not have this timing race.

Redistribution mechanism. As was done in single AVS scenario, attributable security under multiple AVS
requires that whenever any operator is slashed, γburn fraction of the stake held by the operator will always
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be burnt. The remaining γ fraction of slashed stake is allocated across all the AVS. The fraction of this re-
distribution allocated to an AVS can be determined based on different mechanisms, but for concreteness, we
consider simply allocating funds proportional to the security fee paid by the AVS.

Now, we can proceed to calculate how to make the system strongly cryptoeconomically secure.

First we note the amount of stake slashed must satisfy the following relationship:

Amount-slashed ≥
(

min
i
{Fraction-slashable-for-AVSi}

)
× Amount-staked. (16)

Out of the amount slashed, γ = 1 − γburn is redistributed and out of that, AVSi gets a fraction θi of the
redistribution (where θi is the proportional fraction of fees paid by the AVS in the particular mechanism).

Attributable-security-for-AVSi = γ × θi ×
(

min
i
{Fraction-slashable-for-AVSi}

)
× Amount-staked (17)

See fig. 9 for an illustration.

Strong Cryptoeconomic Security under Multiple AVS

If AVSi ensures that the total harm from corruption during the Tredeem period is smaller than the
attributable security, then AVSi is strongly cryptoeconomically secure.

Attributale-security-for-AVSi = γ × θi ×
(

min
i
{Fraction-slashable-for-AVSi}

)
× Amount-staked. (18)

3.4 Risks & Mitigations

3.4.1 Risk Landscape

As we have seen in sec. 4, intersubjective slashing opens the door toward building cryptoeconomically se-
cured AVSs with intersubjectively attributable faults, enforcing conditions whose verification may depend on
information that is external to the blockchain history or temporal in nature. In this section, we will consider
some of the risks related to ways in which such a system might break down and the mitigations of these risks.

Intersubjective cohesion. An important requirement for social consensus to be able to resolve intersubjec-
tive faults for potentially verifiable digital tasks is that all honest members of social consensus should be in
cohesion about what the correct fork of bEIGEN after an intersubjective challenge is triggered. This is referred
to as intersubjective cohesion. See fig. 10a for an illustration. AVSs that rely on intersubjective slashing must
focus on making sure that a large body of users in the social consensus of EIGEN has direct (first-hand) access
to evidence about whether the validators of an AVS have behaved correctly or not. Users who do not have
direct evidence can rely on indirect (second-hand) evidence and their trust relationships to determine their
own evaluation of the status of any slashing event. For instance, in a Data Availability AVS, users running
light nodes will directly observe the AVS validators to ensure that they are properly serving data; for an
oracle AVS, users running the light nodes will make observations of the source and observations of price
attestations made on the chain and check whether the two are consistent.

Intersubjective fracture. If an AVS doesn’t carefully design its light node architecture for users to utilize
when resolving intersubjective faults, it presents the risk of a fracture in the social consensus. Here, fracture
comes in the form of disagreement among the honest users of social consensus on whether the fault has
happened or not and whether it can be properly attributed. We term such a scenario as intersubjective fracture.
See fig. 10b for an illustration. Such a fracture can happen either by accident or by artifice:

• Edge cases: Consider an oracle AVS that specifies that slashing happens when the price feed is incorrect.
The intersubjective fracture can arise if it is difficult to decide if the price feed is slightly incorrect or
approximately correct.

• Corruption of Information Sources. By making use of security vulnerabilities of world information
sources, operators, or intermediate internet infrastructure, an adversary may be able to feed disparate
observations to sow confusion in the social consensus.

• Light node monitoring attacks. If an AVS relies on light node monitoring to detect concurrently at-
tributable faults, it is possible for intersubjective fracture when different nodes have different observa-
tions.
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(a) Intersubjective cohesion. (b) Intersubjective fracture.

Figure 10: Cohesion vs. Fracture.

3.4.2 Mitigations

There is no one-size-fits-all approach for mitigating the risk of intersubjective fracture intrinsic to an inter-
subjective staking ecosystem. Rather, protocol developers need to be disciplined about considering how to
insulate their protocols from common sources of breakdown in intersubjectivity. A key general pattern is
that the Setup phase of the AVS intersubjective staking should be made comprehensive so that the execution
phase can be made as self-serve as possible. A comprehensive setup phase specifies what happens during all
imaginable observations accounting for imperfections in the intersubjective process.

We give some examples here.

• Edge Cases. As an example, an oracle AVS prespecifies that stakers will only be slashed if the price
deviates more than 1% but the AVS is guaranteed that redistribution will happen only if the deviation
is more than 5%. Thus if the price deviates between 1% and 5%, there is a buffer zone where social
consensus can make decisions gracefully.

• Information Source Contamination. By pre-agreeing on which information sources are used, and hav-
ing routine monitoring of these information sources by light nodes, it is possible to minimize confusion
due to equivocation by these sources, as such equivocation is more widely observed.

• Circumstantial Evidence. One way to boost the detectability of malicious behavior is to observe the
downstream consequences of the said behavior. For example, if an oracle manipulation is used to steal
funds from a DeFi protocol, this may leave additional traces that can help arrive at a common view of
whether this is an attack.

• No harm done. The core principle in the design of the intersubjective system should be that no hon-
est participant should lose funds. Thus, similar to the principle in jurisprudence, a staker should be
slashed only if their action is malicious beyond a reasonable doubt. In cases where the AVS software is
misbehaving rather than the stakers are misbehaving, the risk is shifted to the AVS (users) and stakers
will not be slashed for honestly running bad software.

3.4.3 Graceful Degradation

We note that, intersubjective token forking has a graceful degradation with respect to fracture. This is because,
even if two distinct forks are created in the event of intersubjective fracture, AVSs can choose either fork, or
even choose to allow both forked tokens for staking with an appropriate weighting across the two tokens.
This is fundamentally different from the situation of a chain fork, where all applications need to decide which
fork they want to reside on. As an example, if Ethereum forks, a stable coin issuer needs to decide which fork
to reside on, and this may play the effect of king-maker, in deciding which fork can survive. This is, because,
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when a chain forks, all the applications and tokens built on top of the chain fork in a bundled manner. In
the case of token forking, however, it is only the value of the token that is forking according to the perceived
correctness. Thus we can view token forking as an unbundling of chain forking to only the value of the token.
This makes token forking naturally more graceful with respect to intersubjective fracture. Furthermore, since
each forking event requires the burning of certain amount of EIGEN, unlike in chain forks, the forking events
are designed to be even rarer.

4 A World With Intersubjective Staking

4.1 Relationship between Intersubjective Staking and Restaking

Figure 11: An illustration of innovation-vs-security tradeoff and how a service can progress towards ”poten-
tial enshrinement”.

4.1.1 Complementary roles of ETH and EIGEN

Intersubjective staking and restaking can each fill complementary roles within a staking system such as Eigen-
Layer. Many mature AVS protocols consist of both safety properties that can be secured via objective slash-
ing and liveness or censorship-resistance properties that would previously depend on majority-assumptions
which rest on stake decentralization. As discussed above, for such properties, there are often strong advan-
tages in moving to an intersubjective, cryptoeconomic security model for those types of faults. For a service
that uses restaking for safety and intersubjective staking for liveness, fees can be split between the two quo-
rums. Furthermore, for core services provided to the Ethereum ecosystem, we envision many services that
will use dual staking between ETH and EIGEN, where the native restaking absorbs the decentralization / col-
lusion resistane and operator alignment that comes with ETH restaking, and the EIGEN staking can actually
support cryptoeconomic slashing. In this model, the former serves as a mechanism to obtain majority trust
from the Ethereum participants, and the latter serves as a mechanism to obtain economic security. The system
together absorbs the better of the two safety models, even if liveness requires both quorums separately. For
example, an oracle built in this model can be thought of as a halfway house between the enshrined oracle
model proposed by Justin Drake [17] and the cryptoeconomic oracle model proposed in [7] and [18].

4.1.2 EIGEN enables higher rate of innovation in objective AVSs

Intersubjective staking can also be used to support digital tasks which could in principle be secured via objec-
tive fraud proofs, but where doing so would involve a large amount of technical complexity and associated
risk. In particular, in envisioning the lifecycle of a new objective AVS, we can identify a progression that
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Figure 12: Quorum composition.

leverages intersubjective staking for security early in the bootstrapping phase of the protocol and transitions
to restaking or even native protocol adoption as the protocol matures and ossifies.

1. Intersubjective staking for fast innovation. Early in the lifecycle of an AVS, intersubjective staking
can be used in order to launch the AVS protocol and prove product-market fit without assuming the
cost/risk associated with developing and deploying fraud proofs on an accelerated schedule. Most
existing rollup projects have illustrated the need for such a phase. Intersubjective staking could allow
projects in such stages to proceed with bonafide cryptoeconomic security.

2. Restaking for higher economic security. The economic security affordable by intersubjective staking
tops out at the staked EIGEN market cap. AVSs which require even greater amounts, or less volatile
sources, of cryptoeconomic security will need to provision their protocols with fraud proofs in order to
support restaking and access the higher amounts of cryptoeconomic security available from Ethereum.

3. Protocol integration for unconditional security. AVSs which support credibly neutral capabilities and
whose implementations have matured to a highly ossified and stable state may be eligible for an even
higher level of security via adoption by the Ethereum protocol itself. This extends unconditionality to
the correctness of the operation of the protocol. Obviously this requires that the Ethereum community
should want such a feature enshrined into the core protocol.

4.1.3 Quorum Composition

In keeping with the spirit of open innovation, EigenLayer allows AVSs to mix and match these two modalities
of objective staking from ETH and intersubjective staking from EIGEN in addition to utilizing the native AVS
tokens for providing additional validation from an aligned community of AVS token stakers. Fig.12 illustrates
the scenario when ETH restaking should be utilized and when EIGEN staking should be utilized.

4.2 Examples

4.2.1 Grounding Example: Data Availability

In this section, we will provide a high-level overview of the architecture of how an AVS such as EigenDA can
take advantage of intersubjective staking in EigenLayer.

For simplicity, we consider a blockchain for data availability, that is built as an AVS on EigenLayer. Consider
that the EigenLayer operators participating in the consensus of this chain collude to withhold data from all
full nodes. Observe that this action of withholding data is observable from outside the Ethereum as anyone
requesting the underlying blobs will not have access to it. Therefore, this data withholding attack falls under
the scope of the intersubjectively attributable fault, and EIGEN’s intersubjective staking can be used to resolve

25



this fault.

Lightweight monitoring. Utilizing EIGEN’s intersubjective staking requires that the honest members of social
consensus must be able to come to a uniform agreement on whether a data withholding attack has been
perpetuated or not. Adding mechanisms for light clients to monitor the data availablity can provide broader
agreement on this fault. Methods such as Data Availability Sampling (DAS) can be used by light nodes to
monitor the availability of enough chunks to reconstruct the blob [19, 20].

Risks and mitigation. One difficult edge case in data withholding happens, when data is withheld for some
period of time, and then data is subsequently released. Depending on the time period during which this
happens, there can be disagreement on whether this fault occured or not. To mitigate such a scenario, the
setup phase for such a system should specify the maximum period for which data witholding is tolerable.
Lets say this is specified to be 1-day. Now, if data was withheld for something very close to 1-day, then there
maybe disagreement on whether data was withheld or not in this edge-case.
In order to solve this edge-case problem, the system can specify that the stakers may get slashed if data was
withheld for more than 1-day but a challenger raises a fork only if the data was withheld for 2-days. The
creation of this buffer zone, between 1 and 2 days, ensures that when the challenger raises the fault, the
others will agree if the data was withheld more than 1-day.

4.2.2 Examples: Foundational Modules

To showcase example applications that can benefit from intersubjective staking, we first analyze some of the
foundational building modules for any AVS and understand what type of faults can be attributed to each of
these modules (an AVS might not require all of the foundational modules but only some):

• Reorg resistance. Any reorg of finalized blocks in a ledger is caused by either double-signing or not
building on the latest finalized blocks. This is an objectively attributable fault, as anyone with access to
reorged blocks can unilaterally identify the faults.

• Validity. Validity of any deterministic execution, such as EVM execution, is typically done on-chain
via optimistic fraud proofs/zk proofs or simply zk proofs. This is possible because of the objective at-
tributable nature to any fault in deterministic execution. However, writing fraud proofs and zk proofs is
a time-consuming exercise. An alternative mechanism is to make the fault intersubjectively attributable
by having social consensus replicate the execution off-chain whenever there is a challenge and perform
intersubjective forking of the token to penalize the nodes who did the wrong execution. This feature is
especially useful for running ML models, gaming VMs, etc., where writing fraud proofs and zk proofs
is difficult.

• Censorship-resistance. An AVS might censor requests/tasks it receives but this censoring is not possi-
ble to establish algorithmically in a smart contract but is observable. If a transaction has been propa-
gated in the peer-to-peer network but languishes in the mempool for a long enough time and has not
been included in the ledger, then the validators who participated in censoring can be intersubjectively
slashed.

• Data availability. Any fraud in serving of data chunks can’t be established objectively on a smart con-
tract. However, this fraud is observable from outside the chain by employing data-availability sampling
[19] and so the data providers not serving data can be intersubjectively slashed.

• Ledger growth. The AVS can stop executing any new requests/tasks, thus stopping the growth of the
ledger of executions. It is impossible to establish this fault on a smart contract, but it is observable
off-chain, thus making it an intersubjectively attributable fault.

• Oracle. Typically, oracles assume that the majority of the nodes participating in the network are honest
and are honestly feeding the correct data on-chain. However, such designs are vulnerable to tyranny-
of-majority. Establishing the violation of the underlying honest majority assumption on smart contracts
is impossible. However, suppose the input data by this adversarial majority of oracle nodes is different
from the actual data by a significant margin. In that case, it is observable from outside the chain and
malicious oracle nodes can be intersubjectively slashed.

• Threshold cryptography. Current state-of-the-art threshold cryptography protocols like MPC, thresh-
old signature, and secret sharing are vulnerable to collusion by the majority of the participating nodes
in private without being attributable intersubjectively or objectively on-chain. This excludes them from
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benefiting from intersubjective staking. These services can still leverage a decentralized operator set to
get some assurance of collusion resistance.

4.2.3 Examples: Application Use Cases

These foundational modules can then be used as a mix-and-match to more complex modules that can be
employed in different AVSs. For example:

• New Chains. Any new chain is simply a combination of some of the core primitives laid out above.
Thus, intersubjective staking enables developers to build new chains that can include components of
intersubjective staking.

• Composable Modules. A blockchain can be constructed by composing several modules, one pro-
viding one property each: (i) validity checker using ZK or cryptoeconomic means for validation, (ii)
(multilateral) transaction ordering engine for censorship resistance, (iii) DA system: for assuring data
availability, (iv) proposer auction and replacement protocol: for auctioning off rights to become block
proposer - proposer replacement, and (v) a finalization service - for guaranteeing reorg resistance. With
intersubjective staking providing assurances against all of these types of failures, it is possible for open
innovation at the level of each of these modules so that end users can plug and play these modules to
arrive at all the properties of a chain.

• Intents, Order Matching, and MEV Engines. Intent and order matching engines have complex offchain
software for compiling from intents to transactions. An intent engine may require validation checking
for which present techniques for validation may prove difficult to write onchain slashing contracts for.
Intersubjective staking and slashing provide a great opportunity for open innovation here.

• Databases. There are many execution environments for which writing fraud proofs or validity proofs
may be complex in full generality. Therefore, intersubjective slashing can provide an intermediate step
before slashing contracts for these AVS can be rigidly built.

• Gaming VM. Gaming virtual machines where the game state transition function is hard to fully deter-
mine due to the extensive use of GPUs and floating point arithmetic in their underlying logic. However,
significant violations in the game state can be intersubjectively attributed.

• AI Training, Benchmarking, Inference. AI systems do not yet have full determinism due to their
reliance on floating point arithmetic and non-determinism. This compounds the difficulty to write
slashing contracts for incorrect execution, however, significant violations in these systems are intersub-
jectively attributable if the code snippets and hardware architecture are precommitted to.

• Prediction markets. Prediction markets require an oracle to resolve at the end of the market. Therefore
using intersubjective staking for these oracles makes them more permissionless and rigid.

• Storage services. One can create new storage services with a proof-of-replication or a proof-of-custody
protocol, where, if the nodes do not custody distinct units of data, the nodes can be slashed. The
slashing protocol can be intersubjective rather than fully onchain.

• Migrate cloud microservices to crypto. Cloud microservices are usually composition of compute, net-
work and storage. One can start building verifiable versions of these microservices with intersubjective
slashing. For example, consider a platform like Apache Kafka, a distributed event store and stream-
processing platform. One can now start building a blockchain version of such a service.

5 Roadmap

The launch of EIGEN introduces intersubjective staking. This has broad ramifications for the crypto ecosystem
as a whole. With its design being completely novel, the concept needs to be absorbed and discussed widely
by the ecosystem participants. The initial implementation of intersubjective staking along with EIGEN and
bEIGEN token at launch mirrors the V1 protocol to some extent. However, there are still several parameters,
such as CPF, DPF, γburn, timing parameters like Tredeem, etc., that need to be determined for full actuation
of V1 protocol. To accomplish that, we are beginning in a meta-setup phase for the EIGEN’s intersubjective
protocol itself. This period lasts between the initial launch of the token and before transitioning to the full
deployment of the V1 protocol. This meta-setup phase will serve as a call-to-action where researchers, ex-
perts, and the broader community engage in public discourse to discuss the necessary parameters to make
the protocol and its interaction with the rest of the Ethereum ecosystem safe and most effective. One way

27



to view the setup phase for EIGEN’s intersubjective staking is that it is run with training wheels. During this
phase, furthermore, there is a whitelisting process for intersubjective AVSs and all whitelisted AVSs are run
by all the EIGEN stakers. Furthermore, this ensures a high degree of token toxicity (loss of ecosystem value)
if a large fraction of stakers behaves maliciously on a universal intersubjective token. The token toxicity is an
initial mechanism for securing the AVSs before the system can take off the training wheels.

We also plan to run a setup phase for EigenDA to discuss the optimal values for parameters for intersubjective
slashing: for example, the right amount of time required for data withholding before stakers are slashed,
etc. Furthermore, this phase will offer an opportunity to establish a concrete mechanism for computing the
parameter θEigenDA required for allocating attributable security during its execution phase. The setup phase
for EigenDA will serve as a template on how to conduct the setup phase for any AVS that wants to get benefits
of intersubjective staking from EIGEN.

In summary, we will be engaging with the community transparently on two major topics:

• Research community. The design and parameters of the intersubjective token, how the conditions of
forking are specified for new AVSs to inherit security from the token, how to avoid edge cases and risks,
etc.

• Rollup community. The protocol for determining the precise parameters in EigenDA that would offer
sufficient cryptoeconomic security for all rollups using EigenDA.

• AVS community. We want this to be useful for AVSs outside of EigenDA, so we want to get feedback
from the “customers” of this product.

References

[1] Vitalik Buterin. Proof of stake: The making of Ethereum and the philosophy of blockchains. Seven Stories Press,
2022.

[2] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. arXiv preprint arXiv:1710.09437,
2017.

[3] Elinor Ostrom. Governing the commons: The evolution of institutions for collective action. Cambridge univer-
sity press, 1990.

[4] The p + epsilon attack. https://blog.ethereum.org/2015/01/28/p-epsilon-attack.

[5] Schellingcoin: A minimal-trust universal data feed. https://blog.ethereum.org/2014/03/28/

schellingcoin-a-minimal-trust-universal-data-feed.

[6] The subjectivity / exploitability tradeoff. https://blog.ethereum.org/2015/02/14/

subjectivity-exploitability-tradeoff.

[7] Augur: a decentralized oracle and prediction market platform (v2.0). https://www.

allcryptowhitepapers.com/wp-content/uploads/2018/05/Augur-white-paper.pdf.

[8] Kleros. https://kleros.io/whitepaper.pdf.

[9] Aragon court. https://docs-staging.aragon.org/court/.

[10] Hart Lambur, Allison Lu, and Regina Cai. Uma data verification mechanism: Adding economic guaran-
tees to blockchain oracles. Risk Labs, Inc., Tech. Rep., Jul, 2019.

[11] Slashing in ethereum. https://eth2book.info/capella/part2/incentives/slashing/.

[12] A technical handbook on ethereum’s move to proof of stake and beyond. https://eth2book.info/

capella/.

[13] Inactivity leak. https://eth2book.info/capella/part2/incentives/inactivity/.

[14] Don’t overload ethereum’s consensus. https://vitalik.eth.limo/general/2023/05/21/dont_

overload.html.

[15] Soubhik Deb, Robert Raynor, and Sreeram Kannan. Stakesure: Proof of stake mechanisms with strong
cryptoeconomic safety. arXiv preprint arXiv:2401.05797, 2024.

28

https://blog.ethereum.org/2015/01/28/p-epsilon-attack
https://blog.ethereum.org/2014/03/28/schellingcoin-a-minimal-trust-universal-data-feed
https://blog.ethereum.org/2014/03/28/schellingcoin-a-minimal-trust-universal-data-feed
https://blog.ethereum.org/2015/02/14/subjectivity-exploitability-tradeoff
https://blog.ethereum.org/2015/02/14/subjectivity-exploitability-tradeoff
https://www.allcryptowhitepapers.com/wp-content/uploads/2018/05/Augur-white-paper.pdf
https://www.allcryptowhitepapers.com/wp-content/uploads/2018/05/Augur-white-paper.pdf
https://kleros.io/whitepaper.pdf
https://docs-staging.aragon.org/court/
https://eth2book.info/capella/part2/incentives/slashing/ 
https://eth2book.info/capella/
https://eth2book.info/capella/
https://eth2book.info/capella/part2/incentives/inactivity/
https://vitalik.eth.limo/general/2023/05/21/dont_overload.html
https://vitalik.eth.limo/general/2023/05/21/dont_overload.html


[16] Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kannan, and Pramod Viswanath. Bft protocol foren-
sics. In Proceedings of the 2021 ACM SIGSAC conference on computer and communications security, pages
1722–1743, 2021.

[17] Enshrined eth2 price feeds. https://ethresear.ch/t/enshrined-eth2-price-feeds/7391.

[18] A not-quite-cryptoeconomic decentralized oracle. https://ethresear.ch/t/

a-not-quite-cryptoeconomic-decentralized-oracle/6453.

[19] Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. Fraud proofs: Maximising light client security
and scaling blockchains with dishonest majorities. arXiv preprint arXiv:1809.09044, 160, 2018.

[20] Mingchao Yu, Saeid Sahraei, Songze Li, Salman Avestimehr, Sreeram Kannan, and Pramod Viswanath.
Coded merkle tree: Solving data availability attacks in blockchains, 2019.

[21] Aave. https://aave.com/.

[22] Uniswap. https://uniswap.org/.

A Protocol

In this section, we will explain the full details of the protocol around intersubjective staking and provide
a gradual roadmap toward guaranteeing solid representation and resilience against the Security Council
turning malicious.

A.1 V1: Two-token model

We propose a two-token model for intersubjective staking protocol on EigenLayer: (a) backing EIGEN (repre-
sented as bEIGEN) and (b) wrapped representation around bEIGEN (represented as simply EIGEN). Here EIGEN

would be a wrapper around bEIGEN (more details on this wrapper later). Only bEIGEN would be employed
for actual staking and subjected to intersubjective forking. On the other hand, the wrapped token EIGEN

should be used for all non-staking applications.

A.1.1 Staking and Withdrawal

Under normal mode, where no adversarial attack occurs, bEIGEN will be solely used for staking purposes, and
EIGEN will be used for non-staking purposes. No one is expected to hold bEIGEN under normal circumstances.

Staking. Anyone can either stake bEIGEN by directly interacting with the staking contract or can use the UI
to deposit EIGEN. If the UI is being used for staking, then the UI first unwraps the deposited EIGEN and uses
the resulting bEIGEN, that the EIGEN wrapper is currently configured to, for staking in the staking contract.

Withdrawal. As for withdrawal, when the staker triggers a withdrawal request directly in the staking con-
tract, the contract returns the fork of bEIGEN that the staker deposited while staking. Once a withdrawal
request is queued, completion of the queued withdrawal request is subjected to a delay of Twithdraw slots. On
the other hand, if the user is using the UI for withdrawing, then the bEIGEN that is returned by the staking
contract is wrapped to EIGEN which is then returned back to the staker11. Note that this wrapping will work
only if EIGEN’s wrapper contract is still configured to the fork of bEIGEN that the staker has deposited in while
staking (more on this in sec. A.1.3).

A.1.2 Intersubjective forking of bEIGEN

We will explain the working details of intersubjective forking of bEIGEN. If there is a need for raising a
challenge, the challenger needs to complete the following steps within Tchal slots since the malicious actions
of the stakers:

1. Social-deliberation. In the event of a ”potential” intersubjective fault in an AVS, anyone would be able
to alert the social consensus of EIGEN about the fault. This should trigger a deliberation mechanism
among the social consensus to be able to form their own subjective opinion on whether the fault is
genuine and socially agree on who the culprits are. Furthermore, someone from the social consensus is
selected as a challenger to trigger the intersubjective challenge.

11UI is much more opinionated than the staking contract. Any staker who disagrees with the UI can still interact with the staking
contracts directly.
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2. Forking bEIGEN. The challenger has to deploy a new bEIGEN ERC20 contract that comes with all the
new bEIGEN tokens minted. We call this event “forking the bEIGEN.” For explanation purposes, we
subsequently refer to bEIGEN1 as the canonical bEIGEN before the forking event and the new fork of
bEIGEN as bEIGEN2.

3. Specifying distribution. They also deploy a ForkDistributor (FD) contract which contains the following
parameters that are socially agreed upon beforehand:

• address of the bEIGEN1 token contract,

• addresses of the operators who behaved maliciously,

• amount of bEIGEN2 to distribute to the challenger,

• For attributable security. Each AVS can redeem an amount of bEIGEN2 based on two factors: the
total amount of bEIGEN1 that was staked with malicious operators as attributable security and a
fraction of the total attributable security that the AVS is owed to.

The total bEIGEN1 stake of the operators whose address has been tagged malicious must amount to at
least DPF fraction of total bEIGEN1. Furthermore, the FD must meet the following requirements:

• any bEIGEN1 holder who wants to redeem bEIGEN2 from it should lock their bEIGEN1 tokens for
a period of Tlock slots. After the end of the lockup period, the bEIGEN1 tokens are returned. See
sec. A.1.4 for details.

4. Specifying enshrined challenge contract. The challenger needs to deploy an enshrined challenge con-
tract that only accepts bEIGEN2 as the challenger bond. This challenge contract is for future forking
of bEIGEN2 as part of the intersubjective challenge. Every fork of bEIGEN will have its own enshrined
challenge contract.

5. Triggering intersubjective challenge onchain. A challenger then must burn CPF worth of total bEIGEN1
for triggering a challenge in the enshrined challenge contract of bEIGEN1. While raising the challenge,
the challenger must supply the addresses of the bEIGEN2 contract, its FD contract, and the enshrined
challenge contract. One clause for a valid challenge is that the challenger must trigger this challenge
within Tchal slots since the attack has happened, otherwise, the challenge wouldn’t be considered valid
socially (this is not programmatically enforced).

6. Transfer. All of the bEIGEN2 tokens are transferred to the FD contract of bEIGEN2 which manages the
redemption based on the clauses specified in it.

Social-resolution-of-deadlocks. Once a challenge has been raised, no new challenge should be raised within
a period of Tredeem slots since the previous challenge was raised. This rule will be enforced socially (not
algorithmically in smart contracts!) by not accepting any challenge that contravenes this rule. To understand
the cryptoeconomics around this restriction, please see sec. 3.3.

A.1.3 Wrapping interface EIGEN

The wrapping interface EIGEN is an ERC20 smart contract. The core thesis behind the interface is that a user
who holds bEIGEN tokens can delegate their own decision-making power of deciding which fork of bEIGEN is
the canonical fork to the governance of this EIGEN wrapper contract. In return, the user will now hold EIGEN

tokens.

Wrapping and unwrapping. At any time, anyone can instantly wrap the fork of the bEIGEN token that EIGEN
wrapper is currently configured to and receive an equivalent amount of EIGEN tokens. As for unwrapping, at
any point in time, anyone can instantly unwrap EIGEN into an equivalent amount of the fork of bEIGEN token
that the EIGEN is currently configured to.

Backing. Wrapping involves transferring bEIGEN tokens to the EIGEN wrapper’s contract12. These bEIGEN

tokens will be held by the wrapper contract, and the user will be issued an equivalent number of EIGEN

tokens. Therefore, 1 unit of EIGEN is backed by 1 unit of the fork of bEIGEN that EIGEN wrapper is currently
configured to and is held by the wrapper contract.

Lagged governance: mitigation in case of disagreement with EIGEN wrapper’s governance. The EIGEN

wrapper contract must require that the contract is upgradeable by its governance to reconfigure to a different

12As mentioned above, these bEIGEN tokens should be from the fork of bEIGEN that the wrapper contract is configured to.
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fork of bEIGEN with a delay of TwGovDelay slots. Suppose an existing EIGEN holder agrees with the decision
of the governance of the EIGEN wrapper. In that case, the user doesn’t have to do anything and can continue
to use EIGEN for non-staking purposes as usual. However, if the user disagrees, the user will have TwGovDelay
slots to unwrap to get the tokens belonging to the existing fork of bEIGEN that the EIGEN wrapper contract is
configured to before the governance decision gets executed.

Governance steps for upgrading configuration to a new fork of bEIGEN. Suppose there is a fork of bEIGEN
from bEIGEN1 to bEIGEN2 and the governance of the EIGEN wrapper wants to configure the wrapper to bEIGEN2
(from bEIGEN1). To do that, the governance of EIGEN has to queue an upgrade transaction to configure EIGEN

to bEIGEN2 and a transaction for locking bEIGEN1 with the FD of bEIGEN2 to mint bEIGEN2. Once these two
transactions are executed after TwGovDelay slots, the bEIGEN1 tokens of the EIGEN wrapper are locked with the
FD of bEIGEN2 for a period of Tlock slots and are minted back equivalent amount of bEIGEN2 tokens. After
the lock-up period is over, the locked bEIGEN1 tokens are given back to the wrapper EIGEN contract, but they
won’t be returned as part of the unwrapping of EIGEN.

A.1.4 Redemption clause for bEIGEN1 holders, stakers, and challengers if in agreement with the intersub-
jective fork

Once the bEIGEN1 tokens are transferred to the FD associated with bEIGEN2, a correct FD must respect the
following set of rules for bEIGEN1 holders, stakers and challengers to be able to redeem:

1. HODLER path: those holding bEIGEN1 before the end of redemption period. The redemption period
for bEIGEN1 holders ends Tredeem slots after the attack was executed. Before the redemption period ends,
anyone holding bEIGEN1 has to lock their bEIGEN1 tokens with the FD for a lockup period of Tlock slots.
The FD will instantly issue the equivalent amount of new bEIGEN2 tokens to the depositor. After the
lockup period is over, the FD will release the bEIGEN1 tokens back to the depositor.

2. STAKER path: those staked when the challenge was raised. Before Tredeem slots have passed since the
attack was executed, the staker can prove to the FD that they were staked to a non-malicious operator
for a certain amount of bEIGEN1 tokens at the time when the challenge was raised. If the check passes,
the FD will distribute the equivalent amount of bEIGEN2 tokens13.

3. PENDING-WITHDRAWAL path: those with a pending withdrawal. Suppose a staker queued a with-
drawal before the attack happened but the withdrawal didn’t complete by the end of Tredeem slots after
the attack was executed. During the period from the end of Tredeem slots to the Tredeem + Tpending−redeem
slots since the attack happened, the staker can then redeem an equivalent amount of bEIGEN2 tokens by
proving that it had a pending withdrawal which satisfies the above criteria.

4. CHALLENGER path. The challenger can redeem their share of the bEIGEN2 tokens from FD at any
time. However, observe that, unlike others, the challenger has to sacrifice its holding of bEIGEN1 tokens
(while raising the challenge).

See fig. 13 for an illustration.

A.1.5 Redemption clause for EIGEN holders

EIGEN holder is in agreement with the governance of EIGEN. If an EIGEN holder is in agreement with the de-
cision of the governance regarding the challenge that was raised, then the holder doesn’t have to do anything.

Wrapper-holder-in-time redemption: EIGEN holder disagrees with the governance of EIGEN. On the other
hand, suppose the EIGEN holder has a disagreement with the decision of the governance of the interface. This
disagreement appears in one of the following scenarios:

• EIGEN holder agrees with the challenge and considers bEIGEN2 as the canonical fork but the governance
of EIGEN didn’t queue any upgrade request to configure from bEIGEN1 to bEIGEN2 within Twait slots
since the challenge was raised.

• EIGEN holder disagrees with the challenge but the governance has queued an upgrade request to config-
ure EIGEN from bEIGEN1 to bEIGEN2. The upgrade would be executed TwGovDelay slots after the upgrade
is queued14.

13Note that the redeemed bEIGEN2 tokens are not automatically staked with EigenLayer. The staker has to stake them separately.
14In the event of a censorship attack, the upgrade transaction might be executed more than TwGovDelay slots after the upgrade was

queued. In our analysis in sec. B, we consider that Ethereum can be censored for at max a certain period of length Tcensorship slots.
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Figure 13: An illustration of redemption mechanism under HODLER, STAKER and PENDING WITH-
DRAWAL path. Here, for brevity, we assumed that the stakers attacked at time 0.

In either of the scenarios, the EIGEN holder needs to perform the following steps in sequence:

1. get access to its EIGEN on Ethereum

2. unwrap for the bEIGEN1 at the EIGEN contract.

Also, in the scenario where the EIGEN holder is in agreement with the challenge but the governance of EIGEN
wrapper contract doesn’t, the bEIGEN1 holder afterward has to redeem for bEIGEN2 by locking bEIGEN1. This
redemption must be done within Tredeem slots after the attack was executed.

In summary, the redemption mechanism for an EIGEN holder is as follows:

• EIGEN holders can be passive if they agree with the wrapping interface’s governance.

• EIGEN holders must actively perform a certain set of actions if they disagree with the governance.

A.1.6 Licensing

For intersubjective forking to work, it is necessary that a challenger be able to list the new forked token
bEIGEN2 as a strategy in the StrategyManager contract. To ensure that any legitimate fork gets listed as a
strategy permissionlessly, we will have the following licensing clause15:

Anyone can use the license of EigenLayer’s strategy contract to list strategy (gated by governance of staking
contract) for the fork bEIGEN2 in the staking contract as long as the intersubjective challenge is tagging at least
DPF fraction of bEIGEN1 as malicious for an intersubjectively attributable fault and burning them while creating
the fork bEIGEN2.

See sec. B for security analysis of V1 protocol.
15It’s specifically a clause added to a license to allow other uses than those in the license body. As an example, check out the Additional

Use Grant in Arbitrum Nitro’s license here: https://github.com/OffchainLabs/nitro/blob/master/LICENSE.md
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A.2 V2: Getting solid representation

Consider a legitimate fork that results in bEIGEN2 tokens. One of the shortcomings for V1 is that if the gov-
ernance of EIGEN wrapper is malicious and the EIGEN holder is either not active for more than TwGovDelay or
is not able to access it within a TwGovDelay, then the EIGEN holder won’t be able to redeem for bEIGEN2 in the
worst case. In V2, we will remove this shortcoming.

In the following protocol description, we will only state the changes with respect to V1.

A.2.1 Updated intersubjective fork

Deploy new wrapper EIGEN2 contract. Recall that from V1, as part of the challenge mechanism, the chal-
lenger had to burn CPF fraction of total bEIGEN1 and deploy bEIGEN2 ERC20 contract, an FD contract and
an enshrined challenge contract. In V2, the challenger must deploy a new wrapper interface EIGEN2 with
additional functionality that enables anyone to stop wrapping in return for posting a sufficient amount of
challenge bond.

Supply address of all wrapper-forks of bEIGEN1 to the FD. In addition to specifying the address of bEIGEN1,
the address of malicious stakers, amount to be redeemed to the challenger in the new FD contract for bEIGEN2,
the challenger must also specify the addresses of all wrapper-forks of bEIGEN1 that it considers to be legiti-
mate (more on wrapper-forks below).

Wrap and Transfer. The minted bEIGEN2 supply should be wrapped in the EIGEN2 contract and transferred
to the FD.

Stop further wrapping in the canonical EIGEN1 wrapper. Assume that EIGEN1 is the current canonical
wrapper-fork on bEIGEN1. While triggering the challenge in the enshrined challenge contract of bEIGEN1, the
challenger must also call the stop function in the EIGEN1 wrapper contract to stop any further wrapping of
bEIGEN1 to EIGEN1 as part of the challenge.

A.2.2 Updated wrapper interface EIGEN

In contrast to one wrapping contract in V1 where its governance decides upon the fork of bEIGEN it can
configure to, the wrapping interface EIGEN in V2 doesn’t feature any governance at all. Instead, each inter-
subjective fork would feature its own wrapping contract, and each wrapping contract is immutable.

Backing. For each intersubjective fork, 1 unit of the associated fork of EIGEN will be backed by 1 unit of
the corresponding fork of bEIGEN. That is, if there is fork from bEIGEN1 to bEIGEN2, then 1 unit of EIGEN1 is
backed by 1 unit of bEIGEN1 and 1 unit of EIGEN2 is backed by 1 unit of bEIGEN2.

Wrapping and unwrapping when challenged. When a challenge is triggered by depositing sufficient amount
of challenge bond, further wrapping in the EIGEN1 wrapper contract will be stopped. Essentially, further pro-
duction of new EIGEN1 is stopped. On the other hand, EIGEN1 holders can continue to unwrap to bEIGEN1
for all time in perpetuity. Once the wrapping has been paused after the intersubjective challenge was raised,
any further unwrapping from EIGEN1 to bEIGEN1 is recorded in the EIGEN1 smart contract’s storage (precisely
the address that unwrapped, the unwrapped amount, and the time of unwrapping). Note that under normal
operation where no challenge is raised, the wrapping and unwrapping remains the same as in V1.

Wrapper-fork: mitigation against potential grieving by raising a fraudulent challenge. A malicious chal-
lenger can burn bEIGEN1 to trigger a malicious challenge that will stop any further deposit of bEIGEN1 in
the EIGEN1 wrapper for the purpose of wrapping. Unfortunately, despite bEIGEN1 being still considered the
legitimate fork by most of social consensus, no one can wrap their bEIGEN1 to EIGEN1 anymore. Under such
scenario, social consensus will agree to have one of them deploy a new wrapper interface EIGEN∗1 that points
to the bEIGEN1. EIGEN1 holders will eventually migrate to EIGEN∗1 by first unwrapping for bEIGEN1 and then
wrapping to get EIGEN∗1 . We call such a scenario where there is only fork from EIGEN1 to EIGEN∗1 without the
underlying bEIGEN1 getting forked as a wrapper-fork. Note that the deployment of wrapper-forks doesn’t
require transferring the tokens to the corresponding FD.
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A.2.3 Redemption clause for bEIGEN1 holders, stakers, and challengers if in agreement with the intersub-
jective fork

All the redemption clauses for bEIGEN1 holders, stakers, and challengers from V1 still hold true except re-
demption pays out EIGEN2 tokens, instead of bEIGEN2.

A.2.4 Redemption clause for EIGEN1 holders

In addition to the redemption rules specified for V1, there is one more redemption rule that needs to be
respected by the FD of the bEIGEN2 fork:

Wrapper-holder-late redemption. The FD of bEIGEN2 must allow holder of any legitimate wrapper-fork
of only the previous fork bEIGEN1 (there could be many wrapper-forks for the same bEIGEN1) be able to
redeem EIGEN2 via the following process:

1. Assuming EIGEN1 to be the wrapper-fork of bEIGEN1, a EIGEN1 holder first unwraps to bEIGEN1
after Tredeem slots since attack (as claimed by the challenger) was executed. As the unwrapping is
happening after the stopping of wrapping in the EIGEN1 wrapper contract, this unwrapping action
is recorded in the storage of the EIGEN1 contract.

2. EIGEN1 holder submits to the FD of bEIGEN2 a pointer to the unwrapping action recorded in the
storage of EIGEN1 contract . This will release the corresponding amount of EIGEN2 to the EIGEN1
holder.

Note that wrapper-holder-in-time redemption mechanism from v1 is also part of the redemption mechanism
for EIGEN1 holders. See fig. 14 for an illustration.

A.2.5 Updated withdrawal

Withdrawal. If the staker has deposited EIGEN1 token for staking, the staker will receive EIGEN1 while with-
drawing from staking if it chooses to receive the wrapper EIGEN token. On the other hand, if the staker
has deposited EIGEN2 for staking, the staker will receive EIGEN2 while withdrawing if it chooses to receive
the wrapper token. The withdrawal will continue to be subjected to a delay of Twithdraw slots by the staking
contract before the withdrawal is completed.

A.2.6 Illustration of interaction between DeFi and V2

We will consider two examples to elucidate interaction between DeFi and EIGEN that demonstrates the power
of solid representation:

1. Lending. Suppose that an EIGEN1 holder puts its EIGEN1 tokens as collateral to borrow USDC via a lend-
ing protocol, say Aave [21]. Now consider that later a fork happens in the light of some intersubjectively
attributable fault. This forks bEIGEN1 and EIGEN1 to bEIGEN2 and EIGEN2, respectively. Due to the solid
representation offered by V2, the EIGEN1 tokens held by the lender now actually give it the right to be
able to redeem EIGEN2 tokens. Therefore, the true value of EIGEN1 tokens held by the lender is actually
a summation of EIGEN1 tokens held by the lender and EIGEN2 tokens that one can redeem using those
EIGEN1 tokens. Any liquidation must take into consideration this aggregated value from the tokens
belonging to the descendent forks of EIGEN1.

2. LPing. Suppose that an EIGEN1 holder deposits an equal value of EIGEN1 and ETH into a liquidity pool
in Uniswap and, in return, receives a liquidity token [22]. Assume that later a fork happens in the
light of some intersubjectively attributable fault. This forks bEIGEN1 and EIGEN1 to bEIGEN2 and EIGEN2,
respectively. Owing to solid representation in V2, the liquidity token would now represent the ETH and
EIGEN1 contribution of the LP to the pool along with the value of EIGEN2 tokens that the LP can redeem
with those EIGEN1 tokens in the event if the LP withdraws from the pool.

In both these examples, the DeFi protocol itself is unaware of the forks, but the users using the protocol are
able to adjust and embed the relative value of the fork.

See sec. C for an FAQ.
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Figure 14: An illustration of wrapper-holder-late redemption. Here, for brevity, we assumed that the stakers
attacked at time 0.

A.3 V3: Making intersubjective protocol resilient to corruption of security council

With respect to V2, the only change in the intersubjective forking protocol will be the removal of enforcement
of withdrawal lag from the staking contract and instead enforce it via a separate immutable contract that
doesn’t have any governance.

A.3.1 Adding gateway for withdrawal lag with a challenge mechanism

Gateway contract. An immutable gateway contract is deployed at the genesis of introducing intersubjective
forking in EigenLayer. This contract will have no governance. Every time someone wants to stake any EIGEN,
they have to first call this contract to deposit their stake to this contract while also supplying the metadata
on the amount of EIGEN, contract address of EIGEN wrapper contract, contract address of staking contract,
and the address of the associated strategy contract of corresponding fork of bEIGEN that is registered in the
staking contract (note that there would be strategy contracts for each intersubjective fork of bEIGEN). After
the gateway contract does unwrapping, in the bEIGEN’s ERC20 contract, the deposited stake would be owned
by the gateway contract while the staking contract would just be doing accounting and delegation. To with-
draw from staking, the staker must make the withdrawal call via the gateway contract. The gateway contract
would forward the call immediately to the staking contract, where the appropriate accounting for deductions
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will be done immediately, but the exact transfer of bEIGEN from the gateway contract will be subjected to the
withdrawal lag of Twithdrawal slots. See fig. 15 for an illustration.

Figure 15: An illustration of the interaction between gateway and staking contracts.

Challenge. By putting a challenge bond in bEIGEN1, anyone can trigger the freezing of all withdrawals from
the staking contract to the gateway contract.

See sec. D for an FAQ.

B Security analysis for V1

B.1 Assumptions

In our V1 design, we make the following assumptions:

• A strong adversary model wherein the adversary’s transaction for attacking AVSs on EigenLayer is not
subjected to censorship attack on Ethereum.

• The 33% adversarial threshold for Ethereum holds true.

• Any transaction on Ethereum can get censored for a maximum of Tcensorship slots before getting finalized
in the ledger.

• The maximum time it takes for detecting any malicious action by a majority/supermajority of stakers
and for the challenger’s transaction to be finalized in the ledger under potential Ethereum censorship
is Tchal slots.

• Each staker is always actively monitoring the challenges being triggered.

• [removed in V2] Any holder of EIGEN, if in non-staking activity, can get access to its EIGEN tokens in a
period less than TwGovDelay slots.

• [removed in V3] The security council of the staking contract is honest.

B.2 Timing Specification

• Twithdraw: Any withdrawal from staking is subjected to a lag (see relevant sec. A.1.1). We call the lag as
“unstaking period.”
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• Tredeem: When a challenger forks bEIGEN1 to bEIGEN2, the challenger is required to specify a slot
tend−o f−redeem in the FD until which anyone holding bEIGEN1 can redeem bEIGEN2 via HODLER path or
STAKER path (see relevant sec. A.1.4). Now, the time of the attack for which the challenge has been
raised is considered to have happened at the slot tattack = tend−o f−redeem − Tredeem.

• Tlock: In order for any holder of bEIGEN1 tokens (not stakers) to redeem bEIGEN2 via HODLER path,
bEIGEN1 tokens would be locked at the time of redeeming bEIGEN2 tokens (see relevant sec. A.1.4).

• Tchal : There is a limited window of length Tchal after the attack during which anyone can raise a chal-
lenge against the attack. Once the challenger specifies slot tend−o f−redeem in the FD of bEIGEN2 (see
above), that automatically sets the challenge window to be (tattack, tattack + Tchal ]. The enforcement of
the restriction that the challenge should be raised within this window is done socially: any challenge
not respecting this restriction will be ignored by default.

• TdeliberationSlack: Before the challenge is raised onchain, the social consensus of EIGEN needs to engage in
deliberation to recognize whether the challenge is correct or not, who are the culprits, and who should
raise the challenge (see relevant sec. A.1.2). We assume that the length of this deliberation period is
TdeliberationSlack slots.

• TwGovDelay: Anytime the EIGEN governance agrees with the new fork bEIGEN2, the governance needs to
queue an upgrade transaction to reconfigure from bEIGEN1 to bEIGEN2. Once queued, the upgrade is
subjected to a lag of TwGovDelay slots before execution (see relevant sec. A.1.3).

• Twait: Immediately after a challenge is raised, any EIGEN holder who agrees with the fork will wait for
further Twait slots (since the challenge was raised) for the governance of EIGEN to queue an upgrade to
reconfigure to the new fork.

• TwGovSlack: In the event of a forking, we assume that a small slack of length TwGovSlack slots after the
challenge is raised is necessary for the governance of EIGEN to decide whether to reconfigure to the
new fork or not. This slack period should be considered within the waiting period of length Twait slots
described above.

B.3 Safety Definitions

Safety for honest stakers and EIGEN holders. The protocol is considered to be safe for honest stakers and
EIGEN holders if all the following conditions hold true:

1. with a rule-conforming FD for bEIGEN2 deployed due to a challenge, the stakers described as malicious
in the FD shouldn’t be able to redeem the bEIGEN2 tokens,

2. with a rule-conforming FD for bEIGEN2 deployed due to a challenge, any deserving staker as specified
by the FD can redeem the bEIGEN2 tokens only once,

3. any decision by the governance of EIGEN doesn’t prohibit active EIGEN holders who disagree with the
governance from redeeming their preferred choice of bEIGEN1 or bEIGEN2 tokens.

B.4 Results

Lemma 1. Under the above assumptions, the proposed two-token protocol is safe for honest stakers and
EIGEN holders.

Proof. We will proceed with the proof by explaining all possible permutations of events (exempting code
bugs) that can happen with the fork and governance of the EIGEN interface.

Scenario 1: bEIGEN1 staker agrees with the challenge

At slot tattack, the malicious operators attack an AVS and immediately queue their withdrawal from staking.
Now, consider the following sequence of events:

1. (tattack, tattack + Tchal ] : Within this period, social consensus finishes deliberation on the details of the
bEIGEN2 and FD contracts, deploys them, triggers a challenge in the enshrined challenge contract. We
represent the slot where the relevant transactions get included in the ledger by tchal .
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2. (tchal , tattack + Tredeem] : Any staker of bEIGEN1 who agrees with the challenge should prove to the FD
of bEIGEN2 that it was staked with a non-malicious operator. Beyond this period, no redemptions are
allowed for honest stakers. Observe that here, no locking of bEIGEN1 is happening (as it is happening
under the STAKER path).

3. twithdraw > tattack + Tredeem: Completion of withdrawal by any malicious operator after participating in
attacking in the slot tattack.

Observe that for the malicious stakers who queue withdrawal after the attack at tattack to be not able to redeem
for new bEIGEN2 tokens (safety clause 1), it is required that (assuming tattack = 0 hereinafter):

Tredeem < Twithdraw. (19)

This condition guarantees that any malicious staker as specified by the FD of bEIGEN2 cannot redeem bEIGEN2.

For the challenge to be raised, we ideally want to give some slack for deliberation among social consensus,
say TdeliberationSlack slots. However, this challenge transaction then could be subjected to censorship. Therefore,
we must have:

Tchal > TdeliberationSlack + Tcensorship (20)

To guarantee safety clause 2, we need the following conditions:

Tredeem − Tcensorship > max{tchal} = Tchal (21)

Tcensorship appears in the LHS because the redemption transaction could be subjected to censorship. This
condition basically guarantees that after the end of the challenge period of maximum length, there is enough
time for any deserving bEIGEN1 staker to be able to redeem bEIGEN2

16.

Scenario 2: EIGEN holder agrees with the challenge and EIGEN’s governance also supports the fork

At slot tattack, the malicious operators attack an AVS and immediately queue their withdrawal from staking.
Now, the following sequence of events must happen:

1. (tattack, tattack + Tchal ]: By some slot tchal within this period, social consensus finishes deliberation on the
details of the bEIGEN2 and FD contracts, deploys them, triggers a challenge in the enshrined challenge
contract.

2. (tchal , tchal + Twait] : At some slot tqueue in this period, honest governance of EIGEN queues an upgrade
that would configure EIGEN to point to bEIGEN2 and a transfer transaction that would be used for
redeeming bEIGEN2.

3. [tqueue + TwGovDelay, tqueue + TwGovDelay + Tcensorship]: The upgrade in the EIGEN wrapper and the transac-
tion to lock old bEIGEN1 and redeem the bEIGEN2 is executed at some point in time within this window
(Tcensorship is appearing here as the upgrade execution transaction could be subjected to censorship).

An honest governance ideally should send the scheduling transaction for queuing upgrade and redemption
as soon as after slot tchal . We offer a small slack of TwGovSlack slots for governance to send the scheduling
transaction. But this might be subjected to Ethereum censorship and so we have the following condition:

Twait > Tcensorship + TwGovSlack (22)

In order for EIGEN’s governance to be able to redeem bEIGEN2, we require

Tredeem > max(tqueue + TwGovDelay + Tcensorship) = Tchal + Twait + TwGovDelay + Tcensorship (23)

Note that this requirement is part of safety clause 2.

16Here, it is being assumed that any honest bEIGEN1 staker sends its transaction for redemption of bEIGEN2 immediately after it
observes the challenge transaction getting finalized on Ethereum. In practice, Ethereum finalization delay and some observation slack
should be included too.
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Scenario 3: bEIGEN forks and EIGEN holder agrees with the challenge but EIGEN governance doesn’t agree
with the challenge

The EIGEN’s governance decides not to upgrade to bEIGEN2. Note that this governance decision of EIGEN

doesn’t impact the flow from scenario 1 which bEIGEN1 holders and stakers have to follow. Only the flow for
EIGEN holders involved in non-staking operations is impacted. With an active honest EIGEN holder, we will
have the following sequence:

1. (tattack, tattack + Tchal ]: At a slot tchal within this period, a challenge is triggered in the challenge contract.

2. (tchal , tchal + Twait]: The EIGEN holder waits until the end of this period but the governance of EIGEN

doesn’t queue any upgrade that would configure EIGEN to point to bEIGEN2 (since governance doesn’t
agree with the challenge).

3. (tchal + Twait, tattack + Tredeem]: Any honest EIGEN holder must unwrap to get bEIGEN1 during this period
and then redeem for bEIGEN2 from the FD.

This scenario illustrates that despite malicious governance of the EIGEN interface not pushing for an upgrade,
an EIGEN holder can redeem the new bEIGEN2 tokens. This is the safety clause 3. The desirable condition is:

Tredeem > max(tchal + Twait) + Tcensorship + Tcensorship = Tchal + Twait + 2Tcensorship (24)

The first term Tcensorship is for the unwrap transaction from EIGEN to bEIGEN1 which might be subjected to
Ethereum censorship. The second term Tcensorship is for the redemption transaction that might be subjected to
Ethereum censorship.

Scenario 4: bEIGEN is forked and EIGEN governance supports the fork but the EIGEN holder doesn’t agree
with the fork.

Given our assumption of honest governance for staking contracts, stakers are not impacted. Also, bEIGEN1
holders are not impacted. The only impacted party are EIGEN holders.

1. (0, Tchal ]: at a slot tchal within this period, the challenge is triggered in the challenge contract. The
challenger also deploys bEIGEN2 and the FD. The governance of EIGEN queues an upgrade that would
point to this bEIGEN2 and a redemption transaction.

2. (tchal , tchal + TwGovDelay]: Any time the governance of EIGEN queues the upgrade to have EIGEN config-
ured to point to bEIGEN2, the disagreeing EIGEN holder must unwrap to get bEIGEN1.

This scenario illustrates despite EIGEN governance pushing for an upgrade to reconfigure EIGEN wrapper
which the active EIGEN holder disagrees with, the EIGEN holder can retrieve bEIGEN1 tokens17. Again this is
part of safety clause 3. The necessary condition is

TwGovDelay > Tcensorship. (25)

Scenario 5: Any bEIGEN1 holder at the time of challenge shouldn’t be able to redeem bEIGEN2 more than
once

Recall that a bEIGEN1 holder has to lock its bEIGEN1 with the FD of bEIGEN2 as part of the redemption process.
Unless the following condition is satisfied,

Tlock > Tredeem (26)

what can happen is that a bEIGEN1 holder might be able to lock its bEIGEN1 for Tlock slots and get bEIGEN2
and then after bEIGEN1 are unlocked, the holder can again lock bEIGEN1 to get additional bEIGEN2 tokens. We
call such a loophole as double redemption.

Mitigation of race conditions due to concurrent challenges. Recall that any legitimate challenge must be
triggered at least Tredeem slots after the previous legitimate challenge was triggered (from social-resolution-of-
deadlocks in Appendix A.1.2). Hence, at any point in time, there can’t be two legitimate challenges going on
simultaneously. This observation nullifies any attack scenario involving race conditions between two or more
concurrent challenges.

17Here, we are assuming that active EIGEN holders can observe queued governance transaction as soon as it is queued into mempool.
In practice, Ethereum finalization delay and some observation slack should be included.
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Therefore, the system is safe under the following requirements:

Tlock > Tredeem

Tchal > Tcensorship + TdeliberationSlack

Tredeem > Tcensorship + Tchal

Tredeem < Twithdraw

Tredeem > Tcensorship + Tchal + Twait + TwGovDelay

Tredeem > 2Tcensorship + Tchal + Twait

TwGovDelay > Tcensorship

Twait > Tcensorship + TwGovSlack

Tredeem < Twithdraw (27)

Additionally, we also need Tpending−redeem > Tcensorship for any staker who has a pending withdrawal from
before the attack but has not completed yet by the end of the redemption period to be able to redeem by the
PENDING-WITHDRAWAL path.

Hence, the proof.

B.5 FAQ

Question 1. Consider a staker who staked EIGEN. When staking, EIGEN was backed by bEIGEN1. Suppose
much later there is a fork from bEIGEN1 to bEIGEN2 and the governance of EIGEN decides to configure it to
bEIGEN2. Assume that the staker was not active within the redemption period. What happens when the
staker tries to withdraw EIGEN after the redemption period?
Answer. Note that this question is breaking the assumption of stakers being inactive, but we want to state
the invariant that guarantees the assumption. If the staker is using the UI for withdrawing, it is impossible
to wrap bEIGEN1 to EIGEN as EIGEN now only accepts bEIGEN2 for wrapping. So, this withdrawal transaction
will fail. Instead, the staker can withdraw bEIGEN1 by directly interacting with the contract, instead of using
the UI (see Appendix A.1.1).

Question 2. What is a possible solution for the set of equations 27 stated in the security analysis?
Answer. The reduced set of equations are:

Tlock > Tredeem

Tchal > Tcensorship + TdeliberationSlack

Tredeem < Twithdraw

Tredeem > Tcensorship + Tchal + Twait + TwGovDelay

TwGovDelay > Tcensorship

Twait > Tcensorship + TwGovSlack

Tpending−redeem > Tcensorship

Assume Tcensorship = 3.5 days, TdeliberationSlack = 3.5 days, TwGovSlack = 1 day. Substituting Tchal = 8 days,
Twait = 5 days, TwGovDelay = 10 days, Tredeem = 28 days, Tpending−redeem = 10 days, Tlock = 30 days and
Twithdraw = 30 days solve the equation.

Question 3. How are Ethereum reorgs for non-finalizing blocks affecting the intersubjective forking protocol?
Answer. We will illustrate the impact of reorgs by explaining different scenarios. Note that we are operating
under the assumption that the 33% adversarial assumption for Ethereum holds true, and so reorgs can impact
only non-finalized blocks within an epoch due to the lack of single slot consensus in Ethereum.

Scenario 1: The challenge transaction for intersubjective forking is subjected to Ethereum reorg

Consider the following sequence of events:

1. At slot tattack, an AVS is attacked by operators of bEIGEN1 stakers who are opted into it.

2. At tqueueChal slot, the challenge transaction is sent but gets queued in mem-pool or reorged out.
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3. At tqueueWithdrawl slot, the adversary withdraws bEIGEN1 from staking.

4. At tchal slot, the challenge transaction to get a new intersubjective fork bEIGEN2 is executed.

Here, tattack < tqueueChal ≤ tqueueWithdrawl < tchal . Assume tattack = 0.

Basically, the challenge transaction is being subjected to censorship in Ethereum, with maximum censoring
that can happen for Tcensorship slots. Here the worry is that the adversary might be able to withdraw bEIGEN1
before the redemption period for bEIGEN2 is over. However, observe that we already have the condition that

Tchal > Tcensorship + TdeliberationSlack,

which means that tchal < Tchal . Given the redemption period Tredeem already takes the worst-case censorship
into account as in the following condition

Tredeem > Tcensorship + Tchal + Twait + TwGovDelay

and

Twithdraw > Tredeem

the above attack of the adversary slipping out with its stake is impossible.

Scenario 2: Challenge transaction got reorged and reordered with the redemption transaction of bEIGEN1
staker

Consider the following sequence of events:

1. At slot tattack, an AVS is attacked by operators of bEIGEN1 stakers who are opted into it.

2. At slot t1 ∈ (tattack, Tchal ], the challenge transaction is sent but reorged out within the finalization period.

3. At slot t2, bEIGEN1 staker who agrees with the challenge and is not delegated to any malicious operator
doesn’t wait for the challenge transaction to be finalized and sends its redemption transaction to the FD
of bEIGEN2 which gets finalized.

4. At slot t3, the challenge transaction is finalized.

Here t1 < t2 < t3. Observe that in step 3, the execution of the redemption transaction would be reverted as
there is no FD for bEIGEN2 yet due to reorg in step 2. However, the loss to the bEIGEN1 staker is only in gas
fees. Ideally, this staker should wait for the finalization of the block containing the challenge transaction.

Scenario 3: Challenge transaction got reorged and reordered with the redemption transaction of EIGEN1
holder

Recall that an EIGEN1 holder would always be waiting for a period of Twait slots

Twait > Tcensorship + TwGovSlack

before sending any redemption transaction, if needed. Under the assumption that 33% adversarial assump-
tion for Ethereum holds true, by the time EIGEN1 holder sends any redemption transaction, the challenge
transaction will already be finalized in the ledger. Hence, the above reordering scenario is never going to
happen.

Question 4. Why does the challenger have the incentive to raise a challenge?
Answer. The challenger has to burn CPF fraction of bEIGEN1 while being able to receive some amount of
bEIGEN2 from the FD of bEIGEN2. In case of a legitimate intersubjective challenge for a potentially verifiable
digital task, bEIGEN2 will be accepted as the canonical fork and ideally, inherit all worth of bEIGEN1 that was
there before the attack. Note that, unlike other honest players, the challenger has to burn bEIGEN1 and has
access to only bEIGEN2. That infers the harmed parties from the attack executed by malicious bEIGEN1 stakers
have the highest incentive to incur the cost to raise the intersubjective challenge.

Question 5. What is the incentive to prevent malicious challenge from being raised?
Answer.It is possible that a malicious entity might raise a vacuous challenge against a digital task for an AVS.
If the social-deliberation mechanism for the AVS is properly designed during the setup phase of the AVS,
then no honest member of the social consensus of EIGEN will respect the new fork bEIGEN2 and bEIGEN1
will continue to be perceived as the canonical fork of bEIGEN by the social consensus. Instead, the malicious
challenger will end up losing CPF fraction of bEIGEN1 that it submitted as a challenge bond.
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C Security analysis for V2

C.1 FAQ

Question 1. Why is pausing of wrapping necessary?
Answer. Without pausing in the wrapping of bEIGEN1 to EIGEN1 when a challenge is raised but still permit-
ting for the perpetual redemption for EIGEN1 holders would enable any EIGEN1 holder to engage in double
redemptions. More specifically, an EIGEN1 holder can unwrap to get bEIGEN1 which is then recorded in the
log maintained by the wrapper EIGEN1. Now, this holder can show a pointer to the record in the storage of
EIGEN1 as proof to the FD of bEIGEN2 to redeem EIGEN2. Without the feature of stopping any further wrapping
from bEIGEN1 to EIGEN1 when the challenge is raised, the holder can then wrap its bEIGEN1 to get EIGEN1,
send it to a different sybil account it controls and then unwrap again to bEIGEN1 and use that to redeem more
EIGEN2, which would have to lead to double redemption.

Question 2. How is daisy chaining getting resolved?
Answer. Consider the following daisy-chaining scenario:

Suppose an EIGEN1 holder is locked in a 1-year position in some non-staking application. During this
1 year period, there have been 10 forks which resulted in transitioning from bEIGEN1 to bEIGEN10 as the
canonical fork of bEIGEN. Now, when the EIGEN1 holder unlocks from its non-staking position after 1

year, suppose the holder considers all the 10 forks legitimate. How does the EIGEN1 holder transition to
holding EIGEN10?

Recall that under the redemption mechanism for v2, a correct FD for the N-th fork bEIGENN token will permit
the holders of EIGENN−1 token to be able to redeem EIGENN token anytime after the redemption period for
bEIGENvN fork has passed over. Depending on the exact value for Tredeem, it is possible that after 1 year,
the redemption period for many forks bEIGENN is over. For our example, we assume the redemption period
until bEIGEN8 is over when EIGEN1 holder’s positions become unlocked. Therefore, what this holder can do
is first unwrap EIGEN1 to bEIGEN1 that records the unwrapping action in EIGEN1 wrapper contract which
enables redeeming EIGEN2 with the FD of bEIGEN2. Then, the holder can do unwrapping from EIGEN2 to
get bEIGEN2. This unwrapping action is recorded in the wrapper EIGEN2, which can then be referred to as
proof to the FD of bEIGEN3 to redeem EIGEN3. This inductive redemption continues until the holder receives
EIGEN8. Assuming that the redemption period for bEIGEN9 is not over yet, the holder can unwrap EIGEN8 to
get bEIGEN8 and then lock it with the FD of bEIGEN9 to redeem bEIGEN9 (note that its bEIGEN8 gets locked
here). Now, the holder can then use the bEIGEN9 to lock it up with the FD of bEIGEN10 to redeem bEIGEN10
(note that its bEIGEN9 gets locked here).

Question 3. How to disincentivize liquidity fracturing?
Answer. Under malicious challenge to pause EIGEN1 wrapper contract, the migration to EIGEN∗1 might happen
gradually, leading to liquidity fracturing for a while. This gives us another lower bound on the challenge
bond:

CPF× Total bEIGEN1 > Profit from causing the fracturing of liquidity

Question 4. In the redemption mechanism for EIGEN1 holders, why does the FD of bEIGEN2 need to permit
redemption for all wrapper-forks of bEIGEN1?
Answer. Consider that at the beginning, the canonical fork is bEIGEN1 and the current wrapper on it to be
EIGEN1. Now let us have the following sequence of events:

1. At t1 slot, a malicious challenge is raised that stops further wrapping in EIGEN1.

2. At t2 slot, a new wrapper EIGEN∗1 is released over bEIGEN1.

3. At t3 slot, a legitimate intersubjective fork bEIGEN2 is done and the FD of bEIGEN2 considers both EIGEN1
and EIGEN∗1 as the legitimate wrapper-forks on bEIGEN1 (under the wrapper-holder-late redemption
mechanism described in sec. A.2.4). Note that this challenge stops further wrapping in EIGEN∗1 .

Consider a different version of redemption protocol where the FD of bEIGEN2 had considered only the latest
wrapper-fork of bEIGEN1, that is EIGEN∗1 in the above case, to be the one that is eligible for redeeming EIGEN2.
Now if an EIGEN1 holder wakes up say 1 year later, they can’t redeem EIGEN2 from the FD of bEIGEN2 directly.
They would have to unwrap to get bEIGEN1 and then wrap to get EIGEN∗1 . However, this wrapping to EIGEN∗1
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is not possible as wrapping was already stopped in step 3 above. That’s why by socially enforcing the FD of
bEIGEN2 include all legitimate wrapper-forks of bEIGEN2 for being eligible to redeem, the EIGEN1 holder can
redeem EIGEN2.

Question 5. In the wrapper-holder-late redemption mechanism for EIGEN1 holders, why does the FD of
bEIGEN2 require holders of wrapper-forks of bEIGEN1 to unwrap only after Tredeem slots since the challenge to
fork bEIGEN1?
Answer. We will show the necessity of this requirement by considering an alternative definition of wrapper-
holder-late redemption where holders of wrapper-forks of bEIGEN1 can redeem EIGEN2 if they have un-
wrapped any time after the intersubjective challenge was triggered. For simplicity of explanation, let us
consider that the wrapper fork is represented by EIGEN1. However, we can have the scenario now where this
holder of EIGEN1 is also receiving bEIGEN1 from the unwrapping within the redemption period and can:

• lock that bEIGEN1 to redeem bEIGEN2 directly within the redemption period via the lock-and-mint policy.

• use the unwrapping from EIGEN1 to bEIGEN1 as a proof to redeem EIGEN2.

Clearly, this is a case of double redemption.

This double redemption can be avoided if the EIGEN1 holder cannot redeem bEIGEN2 by locking bEIGEN1. That
is possible by putting the requirement of Tredeem slots in the wrapper-holder-late redemption mechanism.

D Security Analysis for V3

D.1 FAQ

Question 1. How does putting a lag in a separate gateway contract protect against adversarial action from the
Security Council?
Answer. Suppose the security council maliciously updates the staking contract with the wrong accounting.
Note that this update will be done immediately. However, if now the security council wants to withdraw
the bEIGEN1 stake, it will be subjected to the withdrawal lag in the gateway contract. During this withdrawal
lag, the harmed parties will have every incentive to raise a challenge to stop withdrawals from the staking
contract to the gateway contract. After pausing happens, someone in social consensus (after deliberation)
will launch a new staking contract with a new security council and a new fork bEIGEN2 with its FD which
compensates back the stake to the stakers harmed by the security council.
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